Rehabilitation of Hamstring Injuries

  • Arnlaug WangensteenEmail author
  • Carl Askling
  • Jack Hickey
  • Craig Purdam
  • Anne D. van der Made
  • Kristian Thorborg


The main aim of hamstring injury rehabilitation is to facilitate that the athlete is returning to sport at highest possible performance level as fast as possible but with a minimal risk of reinjury. The characteristics and presentation of the different hamstring injury types may guide the clinician toward a specific and appropriate rehabilitation plan, including rehabilitation goals with adequate progression and loading through stepwise rehabilitation phases. This chapter summarizes the evidence for hamstring rehabilitation programs following athletic hamstring injuries. The chapter covers acute hamstring muscle injuries, complete hamstring tendon avulsion ruptures, apophyseal avulsion fractures, and proximal hamstring tendinopathies. It further provides recommendations for how to optimize the rehabilitation process for the specific hamstring injury types.


  1. 1.
    Kerkhoffs GMMJ, Es N, Wieldraaijer T, Sierevelt IN, Ekstrand J, Dijk CN. Diagnosis and prognosis of acute hamstring injuries in athletes. Knee Surg Sports Traumatol Arthrosc. 2012;21(2):500–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Heiderscheit BC, Sherry MA, Silder A, Chumanov ES, Thelen DG. Hamstring strain injuries: recommendations for diagnosis, rehabilitation, and injury prevention. J Orthop Sports Phys Ther. 2010;40(2):67–81.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Sherry MA, Johnston TS, Heiderscheit BC. Rehabilitation of acute hamstring strain injuries. Clin Sports Med. 2015;34(2):263–84.PubMedCrossRefGoogle Scholar
  4. 4.
    Mendiguchia J, Brughelli M. A return-to-sport algorithm for acute hamstring injuries. Phys Ther Sport. 2011;12(1):2–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Baker SM, Marshak HH, Rice GT, Zimmerman GJ. Patient participation in physical therapy goal setting. Phys Ther. 2001;81(5):1118–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Blanchard S, Glasgow P. A theoretical model to describe progressions and regressions for exercise rehabilitation. Phys Ther Sport. 2014;15(3):131–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Bayer ML, Magnusson SP, Kjaer M, Tendon Research Group Bispebjerg. Early versus delayed rehabilitation after acute muscle injury. N Engl J Med. 2017;377(13):1300–1.PubMedCrossRefGoogle Scholar
  8. 8.
    Järvinen TAH, Järvinen TLN, Kääriäinen M, Aärimaa V, Vaittinen S, Kalimo H, et al. Muscle injuries: optimising recovery. Best Pract Res Clin Rheumatol. 2007;21(2):317–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Järvinen TA, Järvinen M, Kalimo H. Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J. 2013;3(4):337–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Järvinen TAH, Järvinen TLN, Kääriäinen M, Kalimo H, Järvinen M. Muscle injuries: biology and treatment. Am J Sports Med. 2005;33(5):745–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Maffulli N, Oliva F, Frizziero A, Nanni G, Barazzuol M, Via AG, et al. ISMuLT guidelines for muscle injuries. Muscles Ligaments Tendons J. 2013;3(4):241–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Kujala UM, Orava S, Järvinen M. Hamstring injuries. Current trends in treatment and prevention. Sports Med. 1997;23(6):397–404.PubMedCrossRefGoogle Scholar
  13. 13.
    Tol JL, Hamilton B, Eirale C, Muxart P, Jacobsen P, Whiteley R. At return to play following hamstring injury the majority of professional football players have residual isokinetic deficits. Br J Sports Med. 2014;48(18):1364–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Mendiguchia J, Martinez-Ruiz E, Edouard P, Morin J-B, Martinez-Martinez F, Idoate F, et al. A multifactorial, criteria-based progressive algorithm for hamstring injury treatment. Med Sci Sports Exerc. 2017;49(7):1482–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Schmitt B, Tim T, McHugh M. Hamstring injury rehabilitation and prevention of reinjury using lengthened state eccentric training: a new concept. Int J Sports Phys Ther. 2012;7(3):333.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Valle X, Tol JL, Hamilton B, Rodas G, Malliaras P, Malliaropoulos N, et al. Hamstring muscle injuries, a rehabilitation protocol purpose. Asian J Sports Med. 2015;6(4):e25411.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Whiteley R, van Dyk N, Wangensteen A, Hansen C. Clinical implications from daily physiotherapy examination of 131 acute hamstring injuries and their association with running speed and rehabilitation progression. Br J Sports Med. 2018;52(5):303–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Ardern CL, Glasgow P, Schneiders A, Witvrouw E, Clarsen B, Cools A, et al. 2016 Consensus statement on return to sport from the First World Congress in Sports Physical Therapy, Bern. Br J Sports Med. 2016;50(14):853–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Creighton DW, Shrier I, Shultz R, Meeuwisse WH, Matheson GO. Return-to-play in sport: a decision-based model. Clin J Sport Med. 2010;20(5):379–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Shrier I. Strategic Assessment of Risk and Risk Tolerance (StARRT) framework for return-to-play decision-making. Br J Sports Med. 2015;49(20):1311–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Freckleton G, Pizzari T. Risk factors for hamstring muscle strain injury in sport: a systematic review and meta-analysis. Br J Sports Med. 2012;47(6):351–8.PubMedCrossRefGoogle Scholar
  22. 22.
    van Beijsterveldt AMC, van de Port IGL, Vereijken AJ, Backx FJG. Risk factors for hamstring injuries in male soccer players: a systematic review of prospective studies. Scand J Med Sci Sports. 2013;23(3):253–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Orchard J, Best TM. The management of muscle strain injuries: an early return versus the risk of recurrence. Clin J Sport Med. 2002;12(1):3–5.CrossRefGoogle Scholar
  24. 24.
    Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Connell DA, Schneider-Kolsky ME, Hoving JL, Malara F, Buchbinder R, Koulouris G, et al. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. Am J Roentgenol. 2004;183(4):975–84.CrossRefGoogle Scholar
  26. 26.
    Silder A, Sherry MA, Sanfilippo J, Tuite MJ, Hetzel SJ, Heiderscheit BC. Clinical and morphological changes following 2 rehabilitation programs for acute hamstring strain injuries: a randomized clinical trial. J Orthop Sports Phys Ther. 2013;43(5):284–99.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Reurink G, Goudswaard GJ, Tol JL, Almusa E, Moen MH, Weir A, et al. MRI observations at return to play of clinically recovered hamstring injuries. Br J Sports Med. 2014;48(18):1370–6.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Brooks JHM, Fuller CW, Kemp SPT, Reddin DB. Incidence, risk, and prevention of hamstring muscle injuries in professional Rugby union. Am J Sports Med. 2006;34(8):1297–306.PubMedCrossRefGoogle Scholar
  29. 29.
    Ekstrand J, Healy JC, Waldén M, Lee JC, English B, Hägglund M. Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play. Br J Sports Med. 2012;46(2):112–7.CrossRefGoogle Scholar
  30. 30.
    Wangensteen A, Tol JL, Witvrouw E, Van Linschoten R, Almusa E, Hamilton B, et al. Hamstring reinjuries occur at the same location and early after return to sport: a descriptive study of MRI-confirmed reinjuries. Am J Sports Med. 2016;44(8):2112–21.CrossRefGoogle Scholar
  31. 31.
    De Vos R-J, Reurink G, Goudswaard G-J, Moen MH, Weir A, Tol JL. Clinical findings just after return to play predict hamstring re-injury, but baseline MRI findings do not. Br J Sports Med. 2014;48(18):1377–84.CrossRefGoogle Scholar
  32. 32.
    Orchard JW, Best TM, Mueller-Wohlfahrt H-W, Hunter G, Hamilton BH, Webborn N, et al. The early management of muscle strains in the elite athlete: best practice in a world with a limited evidence basis. Br J Sports Med. 2008;42(3):158–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Glasgow P, Phillips N, Bleakley C. Optimal loading: key variables and mechanisms. Br J Sports Med. 2015;49(5):278–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Bleakley CM, Glasgow P, MacAuley DC. PRICE needs updating, should we call the POLICE? Br J Sports Med. 2012;46(4):220–1.PubMedCrossRefGoogle Scholar
  35. 35.
    Askling CM, Tengvar M, Thorstensson A. Acute hamstring injuries in Swedish elite football: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2013;47(15):953–9.CrossRefGoogle Scholar
  36. 36.
    Askling CM, Tengvar M, Tarassova O, Thorstensson A. Acute hamstring injuries in Swedish elite sprinters and jumpers: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2014;48(7):532–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Khan KM, Scott A. Mechanotherapy: how physical therapists’ prescription of exercise promotes tissue repair. Br J Sports Med. 2009;43(4):247–52.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Reurink G, Goudswaard GJ, Tol JL, Verhaar JAN, Weir A, Moen MH. Therapeutic interventions for acute hamstring injuries: a systematic review. Br J Sports Med. 2011;46(2):103–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Pas HIMFL, Reurink G, Tol JL, Weir A, Winters M, Moen MH. Efficacy of rehabilitation (lengthening) exercises, platelet-rich plasma injections, and other conservative interventions in acute hamstring injuries: an updated systematic review and meta-analysis. Br J Sports Med. 2015;49(18):1197–205.PubMedCrossRefGoogle Scholar
  40. 40.
    Cibulka MT, Rose SJ, Delitto A, Sinacore DR. Hamstring muscle strain treated by mobilizing the sacroiliac joint. Phys Ther. 1986;66(8):1220–3.PubMedCrossRefGoogle Scholar
  41. 41.
    Malliaropoulos N, Papalexandris S, Papalada A, Papacostas E. The role of stretching in rehabilitation of hamstring injuries: 80 athletes follow-up. Med Sci Sports Exerc. 2004;36:756–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Sherry MA, Best TM. A comparison of 2 rehabilitation programs in the treatment of acute hamstring strains. J Orthop Sports Phys Ther. 2004;34(3):116–25.PubMedCrossRefGoogle Scholar
  43. 43.
    Hickey JT, Timmins RG, Maniar N, Rio E, Hickey PF, Pitcher CA, et al. Pain-free versus pain-threshold rehabilitation following acute hamstring strain injury: a randomised controlled trial. J Orthop Sports Phys Ther. 2019:1–35.Google Scholar
  44. 44.
    Askling CM, Nilsson J. Thorstensson A. a new hamstring test to complement the common clinical examination before return to sport after injury. Knee Surg Sports Traumatol Arthrosc. 2010;18(12):1798–803.PubMedCrossRefGoogle Scholar
  45. 45.
    Hamilton B, Tol JL, Almusa E, Boukarroum S, Eirale C, Farooq A, et al. Platelet-rich plasma does not enhance return to play in hamstring injuries: a randomised controlled trial. Br J Sports Med. 2015;49(14):943–50.PubMedCrossRefGoogle Scholar
  46. 46.
    Bourne MN, Duhig SJ, Timmins RG, Williams MD, Opar DA, Al Najjar A, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51(5):469–77.PubMedCrossRefGoogle Scholar
  47. 47.
    Hickey JT, Timmins RG, Maniar N, Williams MD, Opar DA. Criteria for progressing rehabilitation and determining return-to-play clearance following hamstring strain injury: a systematic review. Sports Med. 2017;47(7):1375–87.PubMedCrossRefGoogle Scholar
  48. 48.
    Presland JD, Timmins RG, Bourne MN, Williams MD, Opar DA. The effect of Nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sports. 2018;28(7):1775–83.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Maniar N, Shield AJ, Williams MD, Timmins RG, Opar DA. Hamstring strength and flexibility after hamstring strain injury: a systematic review and meta-analysis. Br J Sports Med. 2016;50(15):909–20.PubMedCrossRefGoogle Scholar
  50. 50.
    Askling C. Type of acute hamstring strain affects flexibility, strength, and time to return to pre-injury level. Br J Sports Med. 2006;40(1):40–4.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Malliaropoulos N, Papacostas E, Kiritsi O, Papalada A, Gougoulias N, Maffulli N. Posterior thigh muscle injuries in elite track and field athletes. Am J Sports Med. 2010;38(9):1813–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Schneider-Kolsky ME. A comparison between clinical assessment and magnetic resonance imaging of acute hamstring injuries. Am J Sports Med. 2006;34(6):1008–15.CrossRefGoogle Scholar
  53. 53.
    Hamid MSA, Ali MRM, Yusof A. Interrater and Intrarater reliability of the active knee extension (AKE) test among healthy adults. J Phys Ther Sci. 2013;25(8):957–61.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Reurink G, Goudswaard GJ, Oomen HG, Moen MH, Tol JL, Verhaar JAN, et al. Reliability of the active and passive knee extension test in acute hamstring injuries. Am J Sports Med. 2013;41(8):1757–61.PubMedCrossRefGoogle Scholar
  55. 55.
    Woods C. The Football Association Medical Research Programme: an audit of injuries in professional football—analysis of hamstring injuries. Br J Sports Med. 2004;38(1):36–41.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Orchard JW, Seward H, Orchard JJ. Results of 2 decades of injury surveillance and public release of data in the Australian Football League. Am J Sports Med. 2013;41(4):734–41.PubMedCrossRefGoogle Scholar
  57. 57.
    Elliott MCCW, Zarins B, Powell JW, Kenyon CD. Hamstring muscle strains in professional football players: a 10-year review. Am J Sports Med. 2011;39(4):843–50.PubMedCrossRefGoogle Scholar
  58. 58.
    Opar D, Drezner J, Shield A, Williams M, Webner D, Sennett B, et al. Acute injuries in track and field athletes: a 3-year observational study at the Penn Relays Carnival with epidemiology and medical coverage implications. Am J Sports Med. 2015;43(4):816–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Ekstrand J, Hägglund M, Waldén M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2011;45(7):553–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Ruddy JD, Pollard CW, Timmins RG, Williams MD, Shield AJ, Opar DA. Running exposure is associated with the risk of hamstring strain injury in elite Australian footballers. Br J Sports Med. 2016;52(14):919–28.PubMedCrossRefGoogle Scholar
  61. 61.
    Duhig S, Shield AJ, Opar D, Gabbett TJ, Ferguson C, Williams M. Effect of high-speed running on hamstring strain injury risk. Br J Sports Med. 2016;50(24):1536–40.CrossRefGoogle Scholar
  62. 62.
    Mendiguchia J, Samozino P, Martinez-Ruiz E, Brughelli M, Schmikli S, Morin J-B, et al. Progression of mechanical properties during on-field sprint running after returning to sports from a hamstring muscle injury in soccer players. Int J Sports Med. 2014;35(8):690–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Samozino P, Rabita G, Dorel S, Slawinski J, Peyrot N, Saez de Villarreal E, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26(6):648–58.PubMedCrossRefGoogle Scholar
  64. 64.
    Mendiguchia J, Edouard P, Samozino P, Brughelli M, Cross M, Ross A, et al. Field monitoring of sprinting power-force-velocity profile before, during and after hamstring injury: two case reports. J Sports Sci. 2016;34(6):535–41.PubMedCrossRefGoogle Scholar
  65. 65.
    Mendiguchia J, Martinez-Ruiz E, Morin JB, Samozino P, Edouard P, Alcaraz PE, et al. Effects of hamstring-emphasized neuromuscular training on strength and sprinting mechanics in football players. Scand J Med Sci Sports. 2015;25(6):e621–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Whiteley R, Wangensteen A, van Dyk N, Jacobsen, P. Rehabilitation and return to sport after hamstring injury. Aspetar Sports Med J. 2019;8(Issue Target Top – Hamstring Inj).Google Scholar
  67. 67.
    Shield AJ, Bourne MN. Hamstring injury prevention practices in elite sport: evidence for eccentric strength vs. lumbo-pelvic training. Sports Med. 2018;48(3):513–24.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bourne MN, Williams MD, Opar DA, Al Najjar A, Kerr GK, Shield AJ. Impact of exercise selection on hamstring muscle activation. Br J Sports Med. 2017;51(13):1021–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Zebis MK, Skotte J, Andersen CH, Mortensen P, Petersen HH, Viskaer TC, et al. Kettlebell swing targets semitendinosus and supine leg curl targets biceps femoris: an EMG study with rehabilitation implications. Br J Sports Med. 2013;47(18):1192–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Tsaklis P, Malliaropoulos N, Mendiguchia J, Korakakis V, Tsapralis K, Pyne D, et al. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: implications for exercise selection during rehabilitation. Open Access J Sports Med. 2015;6:209–17.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Cameron ML, Adams RD, Maher CG, Misson D. Effect of the HamSprint Drills training programme on lower limb neuromuscular control in Australian football players. J Sci Med Sport. 2009;12(1):24–30.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Bodendorfer BM, Curley AJ, Kotler JA, Ryan JM, Jejurikar NS, Kumar A, et al. Outcomes after operative and nonoperative treatment of proximal hamstring avulsions: a systematic review and meta-analysis. Am J Sports Med. 2017;46(11):2798–808.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Buckwalter J, Westermann R, Amendola A. Complete proximal hamstring avulsions: is there a role for conservative management? A systematic review of acute repairs and non-operative management. J ISAKOS Jt Disord Amp Orthop Sports Med [Internet]. 2017.Google Scholar
  74. 74.
    van der Made AD, Reurink G, Gouttebarge V, Tol JL, Kerkhoffs GM. Outcome after surgical repair of proximal hamstring avulsions: a systematic review. Am J Sports Med. 2014;43(11):2841–51.PubMedCrossRefGoogle Scholar
  75. 75.
    Harris JD, Griesser MJ, Best TM, Ellis TJ. Treatment of proximal hamstring ruptures – a systematic review. Int J Sports Med. 2011;32(07):490–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Lightsey HM, Kantrowitz DE, Swindell HW, Trofa DP, Ahmad CS, Lynch TS. Variability of United States online rehabilitation protocols for proximal hamstring tendon repair. Orthop J Sports Med. 2018;6(2):2325967118755116.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Barnett AJ, Negus JJ, Barton T, Wood DG. Reattachment of the proximal hamstring origin: outcome in patients with partial and complete tears. Knee Surg Sports Traumatol Arthrosc. 2015;23(7):2130–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Birmingham P, Muller M, Wickiewicz T, Cavanaugh J, Rodeo S, Warren R. Functional outcome after repair of proximal hamstring avulsions. J Bone Jointt Surg Am. 2011;93(19):1819–26.PubMedCrossRefGoogle Scholar
  79. 79.
    Blakeney WG, Zilko SR, Edmonston SJ, Schupp NE, Annear PT. A prospective evaluation of proximal hamstring tendon avulsions: improved functional outcomes following surgical repair. Knee Surg Sports Traumatol Arthrosc. 2017;25(6):1943–50.PubMedCrossRefGoogle Scholar
  80. 80.
    Chahal J, Bush-Joseph CA, Chow A, Zelazny A, Mather RC, Lin EC, et al. Clinical and magnetic resonance imaging outcomes after surgical repair of complete proximal hamstring ruptures: does the tendon heal? Am J Sports Med. 2012;40(10):2325–30.PubMedCrossRefGoogle Scholar
  81. 81.
    Cohen SB, Rangavajjula A, Vyas D, Bradley JP. Functional results and outcomes after repair of proximal hamstring avulsions. Am J Sports Med. 2012;40(9):2092–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Konan S, Haddad F. Successful return to high level sports following early surgical repair of complete tears of the proximal hamstring tendons. Int Orthop. 2010;34(1):119–23.PubMedCrossRefGoogle Scholar
  83. 83.
    Lefevre N, Bohu Y, Naouri JF, Klouche S, Herman S. Returning to sports after surgical repair of acute proximal hamstring ruptures. Knee Surg Sports Traumatol Arthrosc. 2013;21(3):534–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Mica L, Schwaller A, Stoupis C, Penka I, Vomela J, Vollenweider A. Avulsion of the hamstring muscle group: a follow-up of 6 adult non-athletes with early operative treatment: a brief report. World J Surg. 2009;33(8):1605–10.PubMedCrossRefGoogle Scholar
  85. 85.
    Rust DA, Giveans MR, Stone RM, Samuelson KM, Larson CM. Functional outcomes and return to sports after acute repair, chronic repair, and allograft reconstruction for proximal hamstring ruptures. Am J Sports Med. 2014;42(6):1377–83.PubMedCrossRefGoogle Scholar
  86. 86.
    Sarimo J, Lempainen L, Mattila K, Orava S. Complete proximal hamstring avulsions: a series of 41 patients with operative treatment. Am J Sports Med. 2008;36(6):1110–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Skaara HE, Moksnes H, Frihagen F, Stuge B. Self-reported and performance-based functional outcomes after surgical repair of proximal hamstring avulsions. Am J Sports Med. 2013;41(11):2577–84.PubMedCrossRefGoogle Scholar
  88. 88.
    Brucker PU, Imhoff AB. Functional assessment after acute and chronic complete ruptures of the proximal hamstring tendons. Knee Surg Sports Traumatol Arthrosc. 2005;13(5):411–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Klingele KE, Sallay PI. Surgical repair of complete proximal hamstring tendon rupture. Am J Sports Med. 2002;30(5):742–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Sallay PI, Ballard G, Hamersly S, Schrader M. Subjective and functional outcomes following surgical repair of complete ruptures of the proximal hamstring complex. Orthopedics. 2008;31(11):1092.PubMedCrossRefGoogle Scholar
  91. 91.
    Shambaugh BC, Olsen JR, Lacerte E, Kellum E, Miller SL. A comparison of nonoperative and operative treatment of complete proximal hamstring ruptures. Orthop J Sports Med. 2017;5(11):232596711773855.CrossRefGoogle Scholar
  92. 92.
    Folsom GJ, Larson CM. Surgical treatment of acute versus chronic complete proximal hamstring ruptures: results of a new allograft technique for chronic reconstructions. Am J Sports Med. 2008;36(1):104–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Askling CM, Koulouris G, Saartok T, Werner S, Best TM. Total proximal hamstring ruptures: clinical and MRI aspects including guidelines for postoperative rehabilitation. Knee Surg Sports Traumatol Arthrosc. 2013;21(3):515–33.PubMedCrossRefGoogle Scholar
  94. 94.
    Vandervliet EJM, Vanhoenacker FM, Snoeckx A, Gielen JL, Van Dyck P, Parizel PM. Sports-related acute and chronic avulsion injuries in children and adolescents with special emphasis on tennis. Br J Sports Med. 2007;41(11):827–31.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Goom TSH, Malliaras P, Reiman MP, Purdam CR. Proximal hamstring tendinopathy: clinical aspects of assessment and management. J Orthop Sports Phys Ther. 2016;46(6):483–93.CrossRefGoogle Scholar
  96. 96.
    Schmikli SL, Backx FJ, Kemler HJ, Van Mechelen W. National survey on sports injuries in the Netherlands: target populations for sports injury prevention programs. Clin J Sport Med. 2009;19(2):101–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Schmikli SL, de Vries WR, Inklaar H, Backx FJG. Injury prevention target groups in soccer: injury characteristics and incidence rates in male junior and senior players. J Sci Med Sport. 2011;14(3):199–203.PubMedCrossRefGoogle Scholar
  98. 98.
    White KK, Williams SK, Mubarak SJ. Definition of two types of anterior superior iliac spine avulsion fractures. J Pediatr Orthop. 2002;22(5):578–82.PubMedGoogle Scholar
  99. 99.
    Schuett DJ, Bomar JD, Pennock AT. Pelvic apophyseal avulsion fractures: a retrospective review of 228 cases. J Pediatr Orthop. 2015;35(6):617–23.PubMedCrossRefGoogle Scholar
  100. 100.
    Rossi F, Dragoni S. Acute avulsion fractures of the pelvis in adolescent competitive athletes: prevalence, location and sports distribution of 203 cases collected. Skelet Radiol. 2001;30(3):127–31.CrossRefGoogle Scholar
  101. 101.
    Eberbach H, Hohloch L, Feucht MJ, Konstantinidis L, Südkamp NP, Zwingmann J. Operative versus conservative treatment of apophyseal avulsion fractures of the pelvis in the adolescents: a systematical review with meta-analysis of clinical outcome and return to sports. BMC Musculoskelet Disord. 2017;18(1):162.Google Scholar
  102. 102.
    McKinney BI, Nelson C, Carrion W. Apophyseal avulsion fractures of the hip and pelvis. Orthopedics. 2009;32(1):42.PubMedCrossRefGoogle Scholar
  103. 103.
    Ferlic PW, Sadoghi P, Singer G, Kraus T, Eberl R. Treatment for ischial tuberosity avulsion fractures in adolescent athletes. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):893–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Kujala UM, Orava S, Karpakka J, Leppävuori J, Mattila K. Ischial tuberosity apophysitis and avulsion among athletes. Int J Sports Med. 1997;18(2):149–55.PubMedCrossRefGoogle Scholar
  105. 105.
    Metzmaker JN, Pappas AM. Avulsion fractures of the pelvis. Am J Sports Med. 1985;13(5):349–58.PubMedCrossRefGoogle Scholar
  106. 106.
    Schoensee SK, Nilsson KJ. A novel approach to treatment for chronic avulsion fracture of the ischial tuberosity in three adolescent athletes: a case series. Int J Sports Phys Ther. 2014;9(7):974.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Beatty NR, Félix I, Hettler J, Moley PJ, Wyss JF. Rehabilitation and prevention of proximal hamstring tendinopathy. Curr Sports Med Rep. 2017;16(3):162–71.PubMedCrossRefGoogle Scholar
  108. 108.
    Rio E, van Ark M, Docking S, Moseley GL, Kidgell D, Gaida JE, et al. Isometric contractions are more analgesic than isotonic contractions for patellar tendon pain: an in-season randomized clinical trial. Clin J Sport Med. 2017;27(3):253–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Rio E, Kidgell D, Purdam C, Gaida J, Moseley GL, Pearce AJ, et al. Isometric exercise induces analgesia and reduces inhibition in patellar tendinopathy. Br J Sports Med. 2015;49(19):1277–83.PubMedCrossRefGoogle Scholar
  110. 110.
    Cook JL, Purdam C. Is compressive load a factor in the development of tendinopathy? Br J Sports Med. 2012;46(3):163–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Beyer R, Kongsgaard M, Hougs Kjær B, Øhlenschlæger T, Kjær M, Magnusson SP. Heavy slow resistance versus eccentric training as treatment for Achilles tendinopathy: a randomized controlled trial. Am J Sports Med. 2015;43(7):1704–11.PubMedCrossRefGoogle Scholar
  112. 112.
    Kongsgaard M, Kovanen V, Aagaard P, Doessing S, Hansen P, Laursen AH, et al. Corticosteroid injections, eccentric decline squat training and heavy slow resistance training in patellar tendinopathy. Scand J Med Sci Sports. 2009;19(6):790–802.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Rio E, Kidgell D, Moseley GL, Gaida J, Docking S, Purdam C, et al. Tendon neuroplastic training: changing the way we think about tendon rehabilitation: a narrative review. Br J Sports Med. 2016;50(4):209–15.CrossRefGoogle Scholar
  114. 114.
    Cook JL, Purdam CR. The challenge of managing tendinopathy in competing athletes. Br J Sports Med. 2014;48(7):506–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Braith RW, Graves JE, Pollock ML, Leggett SL, Carpenter DM, Colvin AB. Comparison of 2 vs 3 days/week of variable resistance training during 10- and 18-week programs. Int J Sports Med. 1989;10(6):450–4.PubMedCrossRefGoogle Scholar
  116. 116.
    Coombes BK, Bisset L, Vicenzino B. A new integrative model of lateral epicondylalgia. Br J Sports Med. 2009;43(4):252–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Drew BT, Smith TA, Littlewood C, Sturrock B. Do structural changes (e.g., collagen/matrix) explain the response to therapeutic exercises in tendinopathy: a systematic review. Br J Sports Med. 2014;48(12):966–72.PubMedCrossRefGoogle Scholar
  118. 118.
    Langberg H, Skovgaard D, Petersen LJ, Bulow J, Kjaer M. Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans. J Physiol. 1999;521(Pt 1):299–306.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Visnes H, Hoksrud A, Cook J, Bahr R. No effect of eccentric training on jumper’s knee in volleyball players during the competitive season: a randomized clinical trial. Clin J Sport Med. 2005;15(4):227–34.PubMedCrossRefGoogle Scholar
  120. 120.
    de Jesus JF, Bryk FF, Moreira VC, Nakaoka GB, dos Reis AC, Lucareli PRG. Gluteus Maximus inhibition in proximal hamstring tendinopathy. MedicalExpress. 2015;2(4):1–5.Google Scholar
  121. 121.
    Järvinen M. Healing of a crush injury in rat striated muscle. 4. Effect of early mobilization and immobilization on the tensile properties of gastrocnemius muscle. Acta Chir Scand. 1976;142(1):47–56.PubMedGoogle Scholar
  122. 122.
    Järvinen M. Healing of a crush injury in rat striated muscle. 3. A micro-angiographical study of the effect of early mobilization and immobilization on capillary ingrowth. Acta Pathol Microbiol Scand A. 1976;84(1):85–94.PubMedGoogle Scholar
  123. 123.
    Järvinen M. Healing of a crush injury in rat striated muscle. 2. A histological study of the effect of early mobilization and immobilization on the repair processes. Acta Pathol Microbiol Scand A. 1975;83(3):269–82.PubMedGoogle Scholar
  124. 124.
    Järvinen M. Immobilization effect on the tensile properties of striated muscle: an experimental study in the rat. Arch Phys Med Rehabil. 1977;58(3):123–7.PubMedGoogle Scholar
  125. 125.
    Järvinen M, Sorvari T. Healing of a crush injury in rat striated muscle. 1. Description and testing of a new method of inducing a standard injury to the calf muscles. Acta Pathol Microbiol Scand A. 1975;83(2):259–65.PubMedGoogle Scholar
  126. 126.
    Järvinen MJ, Einola SA, Virtanen EO. Effect of the position of immobilization upon the tensile properties of the rat gastrocnemius muscle. Arch Phys Med Rehabil. 1992;73(3):253–7.PubMedGoogle Scholar
  127. 127.
    Garrett WE, Safran MR, Seaber AV, Glisson RR, Ribbeck BM. Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure. Am J Sports Med. 1987;15(5):448–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Arnlaug Wangensteen
    • 1
    Email author
  • Carl Askling
    • 2
    • 3
  • Jack Hickey
    • 4
  • Craig Purdam
    • 5
    • 6
  • Anne D. van der Made
    • 7
    • 8
    • 9
  • Kristian Thorborg
    • 10
  1. 1.Department of Sports Medicine, Oslo Sports Trauma Research CenterNorwegian School of Sport SciencesOsloNorway
  2. 2.The Swedish School of Sport and Health SciencesStockholmSweden
  3. 3.Department of NeuroscienceKarolinska InstitutetStockholmSweden
  4. 4.School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneAustralia
  5. 5.Faculty of HealthUniversity of CanberraBruceAustralia
  6. 6.School of Allied HealthLa Trobe UniversityBundooraAustralia
  7. 7.Department of Orthopaedic Surgery, Amsterdam UMCUniversity of Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
  8. 8.Academic Center for Evidence-Based Sports Medicine (ACES)Amsterdam UMCAmsterdamThe Netherlands
  9. 9.Amsterdam Collaboration for Health and Safety in Sports (ACHSS)AMC/VUmc IOC Research CenterAmsterdamThe Netherlands
  10. 10.Department of Orthopedic Surgery, Sports Orthopedic Research Center—Copenhagen (SORC-C)Amager-Hvidovre Hospital, Copenhagen UniversityCopenhagenDenmark

Personalised recommendations