Advertisement

Privacy in Mobile Sensing

  • Frank KarglEmail author
  • Rens W. van der Heijden
  • Benjamin Erb
  • Christoph Bösch
Chapter
Part of the Studies in Neuroscience, Psychology and Behavioral Economics book series (SNPBE)

Abstract

In this chapter, we discuss the privacy implications of mobile sensing and modern psycho-social sciences. We aim to raise awareness of the multifaceted nature of privacy, describing the legal, technical and applied aspects in some detail. Not only since the European GDPR, these aspects lead to a broad spectrum of challenges of which data processors cannot be absolved by a simple consent form from their users. Instead appropriate technical and organizational measures should be put in place through a proper privacy engineering process. Throughout the chapter, we illustrate the importance of privacy protection through a set of examples and also technical approaches to address these challenges. We conclude this chapter with an outlook on privacy in mobile sensing, digital phenotyping and, psychoinformatics.

References

  1. Al-Momani A, Kargl F, Schmidt R, Bösch C (2018) iRide: a privacy-preserving architecture for self-driving cabs service. In: 2018 IEEE vehicular networking conference (VNC), pp 1–8.  https://doi.org/10.1109/VNC.2018.8628378
  2. Barbaro M, Zeller T (2006) A face is exposed for AOL searcher no. 4417749. New York TimesGoogle Scholar
  3. Douriez M, Doraiswamy H, Freire J, Silva CT (2016) Anonymizing nyc taxi data: does it matter?. In: 2016 IEEE international conference on data science and advanced analytics (DSAA), pp 140–148.  https://doi.org/10.1109/DSAA.2016.21
  4. Hoepman JH (2014) Privacy design strategies. In: IFIP international information security conference. Springer, pp 446–459Google Scholar
  5. Joinson A (1999) Social desirability, anonymity, and internet-based questionnaires. Behav Res Methods Instrum Comput 31(3):433–438CrossRefGoogle Scholar
  6. Kargl F, Schaub F, Dietzel S (2010) Mandatory enforcement of privacy policies using trusted computing principles. In: Intelligent information privacy management symposium (Privacy 2010) AAAI. Stanford University, USAGoogle Scholar
  7. Kelman HC (1977) Privacy and research with human beings. J Soc Issues 33(3):169–195Google Scholar
  8. Krumpal I (2013) Determinants of social desirability bias in sensitive surveys: a literature review. Qual Quant 47(4):2025–2047.  https://doi.org/10.1007/s11135-011-9640-9CrossRefGoogle Scholar
  9. Lindell Y, Pinkas B (2002) Privacy preserving data mining. J Cryptol 15(3):177–206Google Scholar
  10. Narayanan A, Shmatikov V (2008) Robust de-anonymization of large sparse datasets. In: 2008 IEEE symposium on security and privacy (S&P 2008), 18–21 May 2008. California, USA, IEEE Computer Society, Oakland, pp 111–125Google Scholar
  11. Narayanan A, Shmatikov V (2009) De-anonymizing social networks. In: 30th IEEE symposium on security and privacy (S&P 2009). California, USA, IEEE Computer Society, Oakland, pp 173–187, 17–20 May 2009Google Scholar
  12. Narayanan A, Shmatikov V (2010) Myths and fallacies of “personally identifiable information”. Commun ACM 53(6):24–26CrossRefGoogle Scholar
  13. Pfitzmann A, Hansen M (2010) A terminology for talking about privacy by data minimization: Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management (v0.34). http://dud.inf.tu-dresden.de/Anon_Terminology.shtml
  14. Schaar K (2017) Anpassung von Einwilligungserklärungen für wissenschaftliche Forschungsprojekte. Die informierte Einwilligung nach den Vorgaben der DS-GVO und Ethikrichtlinien. Zeitschrift für Datenschutz 5:213–220Google Scholar
  15. Serenko N, Fan L (2013) Patients’ perceptions of privacy and their outcomes in healthcare. Int J Behav Healthc Res 4(2):101–122CrossRefGoogle Scholar
  16. Sweeney L (2002) k-anonymity: a model for protecting privacy. Int J Uncertain Fuzziness Knowl-Based Syst 10(5):557–570.  https://doi.org/10.1142/S0218488502001648CrossRefGoogle Scholar
  17. Wagner I, Eckhoff D (2018) Technical privacy metrics: a systematic survey. ACM Comput Surv 51(3):57:1–57:38.  https://doi.org/10.1145/3168389

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Frank Kargl
    • 1
    Email author
  • Rens W. van der Heijden
    • 1
  • Benjamin Erb
    • 1
  • Christoph Bösch
    • 1
  1. 1.Institute of Distributed Systems Ulm UniversityUlmGermany

Personalised recommendations