Advertisement

Understanding Dwarf Galaxies in Order to Understand Dark Matter

  • Alyson M. BrooksEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 56)

Abstract

Much progress has been made in recent years by the galaxy simulation community in making realistic galaxies, mostly by more accurately capturing the effects of baryons on the structural evolution of dark matter halos at high resolutions. This progress has altered theoretical expectations for galaxy evolution within a Cold Dark Matter (CDM) model, reconciling many earlier discrepancies between theory and observations. Despite this reconciliation, CDM may not be an accurate model for our Universe. Much more work must be done to understand the predictions for galaxy formation within alternative dark matter models.

Notes

Acknowledgements

Thank you to the Simons Foundation for hosting this Symposium, and to the organizers for bringing together a truly stimulating group of dark matter scientists. My work on baryons within a CDM model has been funded by NSF awards AST-1411399 and AST-1813871, and by the Space Telescope Science Institute awards HST-AR-13925 and HST-AR-14281.

References

  1. 1.
    R. Hlozek, J. Dunkley, G. Addison, J.W. Appel, J.R. Bond, C. Sofia Carvalho, S. Das, M.J. Devlin, R. Dünner, T. Essinger-Hileman, J.W. Fowler, P. Gallardo, A. Hajian, M. Halpern, M. Hasselfield, M. Hilton, A.D. Hincks, J.P. Hughes, K.D. Irwin, J. Klein, A. Kosowsky, T.A. Marriage, D. Marsden, F. Menanteau, K. Moodley, M.D. Niemack, M.R. Nolta, L.A. Page, L. Parker, B. Partridge, F. Rojas, N. Sehgal, B. Sherwin, J. Sievers, D.N. Spergel, S.T. Staggs, D.S. Swetz, E.R. Switzer, R. Thornton, E. Wollack, APJ 749, 90 (2012).  https://doi.org/10.1088/0004-637X/749/1/90ADSCrossRefGoogle Scholar
  2. 2.
  3. 3.
    R.S. de Souza, L.F.S. Rodrigues, E.E.O. Ishida, R. Opher, MNRAS 415, 2969 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18916.xADSCrossRefGoogle Scholar
  4. 4.
    A. Pontzen, F. Governato, MNRAS 421, 3464 (2012).  https://doi.org/10.1111/j.1365-2966.2012.20571.xADSCrossRefGoogle Scholar
  5. 5.
    R. Teyssier, A. Pontzen, Y. Dubois, J.I. Read, MNRAS 429, 3068 (2013).  https://doi.org/10.1093/mnras/sts563ADSCrossRefGoogle Scholar
  6. 6.
    J.F. Navarro, C.S. Frenk, S.D.M. White, APJ 490, 493 (1997).  https://doi.org/10.1086/304888ADSCrossRefGoogle Scholar
  7. 7.
    V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J.F. Navarro, C.S. Frenk, S.D.M. White, MNRAS 391, 1685 (2008).  https://doi.org/10.1111/j.1365-2966.2008.14066.xADSCrossRefGoogle Scholar
  8. 8.
    J.F. Navarro, A. Ludlow, V. Springel, J. Wang, M. Vogelsberger, S.D.M. White, A. Jenkins, C.S. Frenk, A. Helmi, MNRAS 402, 21 (2010).  https://doi.org/10.1111/j.1365-2966.2009.15878.xADSCrossRefGoogle Scholar
  9. 9.
    F.C. van den Bosch, B.E. Robertson, J.J. Dalcanton, W.J.G. de Blok, AJ 119, 1579 (2000).  https://doi.org/10.1086/301315ADSCrossRefGoogle Scholar
  10. 10.
    W.J.G. de Blok, S.S. McGaugh, V.C. Rubin, AJ 122, 2396 (2001).  https://doi.org/10.1086/323450ADSCrossRefGoogle Scholar
  11. 11.
    W.J.G. de Blok, A. Bosma, AAP 385, 816 (2002).  https://doi.org/10.1051/0004-6361:20020080ADSCrossRefGoogle Scholar
  12. 12.
    J.D. Simon, A.D. Bolatto, A. Leroy, L. Blitz, APJ 596, 957 (2003).  https://doi.org/10.1086/378200ADSCrossRefGoogle Scholar
  13. 13.
    R.A. Swaters, B.F. Madore, F.C. van den Bosch, M. Balcells, APJ 583, 732 (2003).  https://doi.org/10.1086/345426ADSCrossRefGoogle Scholar
  14. 14.
    D.T.F. Weldrake, W.J.G. de Blok, F. Walter, MNRAS 340, 12 (2003).  https://doi.org/10.1046/j.1365-8711.2003.06170.xADSCrossRefGoogle Scholar
  15. 15.
    R. Kuzio de Naray, S.S. McGaugh, W.J.G. de Blok, A. Bosma, APJS 165, 461 (2006).  https://doi.org/10.1086/505345ADSCrossRefGoogle Scholar
  16. 16.
    G. Gentile, P. Salucci, U. Klein, G.L. Granato, MNRAS 375, 199 (2007).  https://doi.org/10.1111/j.1365-2966.2006.11283.xADSCrossRefGoogle Scholar
  17. 17.
    M. Spano, M. Marcelin, P. Amram, C. Carignan, B. Epinat, O. Hernandez, MNRAS 383, 297 (2008).  https://doi.org/10.1111/j.1365-2966.2007.12545.xADSCrossRefGoogle Scholar
  18. 18.
    C. Trachternach, W.J.G. de Blok, F. Walter, E. Brinks, R.C. Kennicutt Jr., AJ 136, 2720 (2008).  https://doi.org/10.1088/0004-6256/136/6/2720ADSCrossRefGoogle Scholar
  19. 19.
    W.J.G. de Blok, F. Walter, E. Brinks, C. Trachternach, S. Oh, R.C. Kennicutt, AJ 136, 2648 (2008).  https://doi.org/10.1088/0004-6256/136/6/2648ADSCrossRefGoogle Scholar
  20. 20.
    S.H. Oh, C. Brook, F. Governato, E. Brinks, L. Mayer, W.J.G. de Blok, A. Brooks, F. Walter, AJ 142, 24 (2011).  https://doi.org/10.1088/0004-6256/142/1/24ADSCrossRefGoogle Scholar
  21. 21.
    A. Di Cintio, C.B. Brook, A.V. Macciò, G.S. Stinson, A. Knebe, A.A. Dutton, J. Wadsley, MNRAS 437, 415 (2014).  https://doi.org/10.1093/mnras/stt1891ADSCrossRefGoogle Scholar
  22. 22.
    T.K. Chan, D. Kereš, J. Oñorbe, P.F. Hopkins, A.L. Muratov, C.A. Faucher-Giguère, E. Quataert, MNRAS 454, 2981 (2015).  https://doi.org/10.1093/mnras/stv2165ADSCrossRefGoogle Scholar
  23. 23.
    B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, P. Tozzi, APJL 524, L19 (1999).  https://doi.org/10.1086/312287ADSCrossRefGoogle Scholar
  24. 24.
    A. Klypin, A.V. Kravtsov, O. Valenzuela, F. Prada, APJ 522, 82 (1999).  https://doi.org/10.1086/307643ADSCrossRefGoogle Scholar
  25. 25.
    T. Quinn, N. Katz, G. Efstathiou, MNRAS 278, L49 (1996)Google Scholar
  26. 26.
    A.A. Thoul, D.H. Weinberg, APJ 465, 608 (1996).  https://doi.org/10.1086/177446ADSCrossRefGoogle Scholar
  27. 27.
    R. Barkana, A. Loeb, APJ 523, 54 (1999).  https://doi.org/10.1086/307724ADSCrossRefGoogle Scholar
  28. 28.
  29. 29.
    T. Okamoto, L. Gao, T. Theuns, MNRAS 390, 920 (2008).  https://doi.org/10.1111/j.1365-2966.2008.13830.xADSCrossRefGoogle Scholar
  30. 30.
    A.M. Brooks, M. Kuhlen, A. Zolotov, D. Hooper, APJ 765, 22 (2013).  https://doi.org/10.1088/0004-637X/765/1/22ADSCrossRefGoogle Scholar
  31. 31.
    J. Peñarrubia, A.J. Benson, M.G. Walker, G. Gilmore, A.W. McConnachie, L. Mayer, MNRAS 406, 1290 (2010).  https://doi.org/10.1111/j.1365-2966.2010.16762.x
  32. 32.
    A. Zolotov, A.M. Brooks, B. Willman, F. Governato, A. Pontzen, C. Christensen, A. Dekel, T. Quinn, S. Shen, J. Wadsley, APJ 761, 71 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    A.M. Brooks, A. Zolotov, APJ 786 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    A.R. Wetzel, P.F. Hopkins, J.h. Kim, C.A. Faucher-Giguère, D. Kereš, E. Quataert, APJL 827, L23 (2016).  https://doi.org/10.3847/2041-8205/827/2/L23ADSCrossRefGoogle Scholar
  35. 35.
    S. Garrison-Kimmel, A. Wetzel, J.S. Bullock, P.F. Hopkins, M. Boylan-Kolchin, C.A. Faucher-Giguère, D. Kereš, E. Quataert, R.E. Sanderson, A.S. Graus, T. Kelley, MNRAS 471, 1709 (2017).  https://doi.org/10.1093/mnras/stx1710ADSCrossRefGoogle Scholar
  36. 36.
    T. Sawala, C.S. Frenk, A. Fattahi, J.F. Navarro, R.G. Bower, R.A. Crain, C. Dalla Vecchia, M. Furlong, J.C. Helly, A. Jenkins, K.A. Oman, M. Schaller, J. Schaye, T. Theuns, J. Trayford, S.D.M. White, MNRAS 457, 1931 (2016).  https://doi.org/10.1093/mnras/stw145ADSCrossRefGoogle Scholar
  37. 37.
    C.B. Brook, G. Stinson, B.K. Gibson, J. Wadsley, T. Quinn, MNRAS 424, 1275 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21306.xADSCrossRefGoogle Scholar
  38. 38.
    M. Aumer, S.D.M. White, T. Naab, C. Scannapieco, MNRAS 434, 3142 (2013).  https://doi.org/10.1093/mnras/stt1230ADSCrossRefGoogle Scholar
  39. 39.
    M. Vogelsberger, S. Genel, D. Sijacki, P. Torrey, V. Springel, L. Hernquist, MNRAS 436, 3031 (2013).  https://doi.org/10.1093/mnras/stt1789ADSCrossRefGoogle Scholar
  40. 40.
    T.R. Saitoh, H. Daisaka, E. Kokubo, J. Makino, T. Okamoto, K. Tomisaka, K. Wada, N. Yoshida, PASJ 60, 667 (2008)Google Scholar
  41. 41.
    P.F. Hopkins, E. Quataert, N. Murray, MNRAS 417, 950 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19306.xADSCrossRefGoogle Scholar
  42. 42.
    P.F. Hopkins, D. Narayanan, N. Murray, MNRAS 432, 2647 (2013).  https://doi.org/10.1093/mnras/stt723ADSCrossRefGoogle Scholar
  43. 43.
    C.R. Christensen, F. Governato, T. Quinn, A.M. Brooks, S. Shen, J. McCleary, D.B. Fisher, J. Wadsley, MNRAS 440, 2843 (2014).  https://doi.org/10.1093/mnras/stu399ADSCrossRefGoogle Scholar
  44. 44.
    S.M. Benincasa, J. Wadsley, H.M.P. Couchman, B.W. Keller, MNRAS 462, 3053 (2016).  https://doi.org/10.1093/mnras/stw1741ADSCrossRefGoogle Scholar
  45. 45.
    P.F. Hopkins, A. Wetzel, D. Keres, C.A. Faucher-Giguere, E. Quataert, M. Boylan-Kolchin, N. Murray, C.C. Hayward, S. Garrison-Kimmel, C. Hummels, R. Feldmann, P. Torrey, X. Ma, D. Angles-Alcazar, K.Y. Su, M. Orr, D. Schmitz, I. Escala, R. Sanderson, M.Y. Grudic, Z. Hafen, J.H. Kim, A. Fitts, J.S. Bullock, C. Wheeler, T.K. Chan, O.D. Elbert, D. Narananan, ArXiv e-prints (2017)Google Scholar
  46. 46.
    A. Pallottini, A. Ferrara, S. Bovino, L. Vallini, S. Gallerani, R. Maiolino, S. Salvadori, MNRAS 471, 4128 (2017).  https://doi.org/10.1093/mnras/stx1792ADSCrossRefGoogle Scholar
  47. 47.
    O. Agertz, A.V. Kravtsov, APJ 824, 79 (2016).  https://doi.org/10.3847/0004-637X/824/2/79ADSCrossRefGoogle Scholar
  48. 48.
    V.A. Semenov, A.V. Kravtsov, N.Y. Gnedin, APJ 826, 200 (2016).  https://doi.org/10.3847/0004-637X/826/2/200ADSCrossRefGoogle Scholar
  49. 49.
    V.A. Semenov, A.V. Kravtsov, N.Y. Gnedin, APJ 861, 4 (2018).  https://doi.org/10.3847/1538-4357/aac6ebADSCrossRefGoogle Scholar
  50. 50.
  51. 51.
    J. Shen, R.M. Rich, J. Kormendy, C.D. Howard, R. De Propris, A. Kunder, APJ 720(1), L72 (2010).  https://doi.org/10.1088/2041-8205/720/1/L72. http://adsabs.harvard.edu/abs/2010ApJ...720L.72SADSCrossRefGoogle Scholar
  52. 52.
    D.B. Fisher, N. Drory, APJ 733(2), L47 (2011). 10.1088/2041-8205/733/2/L47. http://arxiv.org/abs/1104.0020stacks.iop.org/2041-8205/733/i=2/a=L47?key=crossref.7e25a6051bda6f1c725b92db72faba5d
  53. 53.
  54. 54.
    A. Brooks, C. Christensen, in Galactic Bulges, Astrophysics and Space Science Library, vol. 418, ed. by E. Laurikainen, R. Peletier, D. Gadotti (Astrophysics and Space Science Library, 2016), p. 317.  https://doi.org/10.1007/978-3-319-19378-6_12Google Scholar
  55. 55.
    I.M. Santos-Santos, A. Di Cintio, C.B. Brook, A. Macciò, A. Dutton, R. Domínguez-Tenreiro, MNRAS 473, 4392 (2018).  https://doi.org/10.1093/mnras/stx2660ADSCrossRefGoogle Scholar
  56. 56.
    S. Garrison-Kimmel, P.F. Hopkins, A. Wetzel, J.S. Bullock, M. Boylan-Kolchin, D. Keres, C.A. Faucher-Giguere, K. El-Badry, A. Lamberts, E. Quataert, R. Sanderson, ArXiv e-prints (2018)Google Scholar
  57. 57.
    K. El-Badry, A. Wetzel, M. Geha, P.F. Hopkins, D. Kereš, T.K. Chan, C.A. Faucher-Giguère, APJ 820, 131 (2016).  https://doi.org/10.3847/0004-637X/820/2/131ADSCrossRefGoogle Scholar
  58. 58.
    A.V. Macciò, F. Fontanot, MNRAS 404, L16 (2010).  https://doi.org/10.1111/j.1745-3933.2010.00825.xADSCrossRefGoogle Scholar
  59. 59.
    E. Polisensky, M. Ricotti, PRD 83(4), 043506 (2011).  https://doi.org/10.1103/PhysRevD.83.043506
  60. 60.
  61. 61.
    S. Horiuchi, P.J. Humphrey, J. Onorbe, K.N. Abazajian, M. Kaplinghat, S. Garrison-Kimmel, Phys. Rev. D 89(2), 025017 (2014).  https://doi.org/10.1103/PhysRevD.89.025017
  62. 62.
    M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese, A. Riotto, Phys. Rev. Lett. 97(7), 071301 (2006).  https://doi.org/10.1103/PhysRevLett.97.071301
  63. 63.
    U. Seljak, A. Makarov, P. McDonald, H. Trac, Phys. Rev. Lett. 97(19), 191303 (2006).  https://doi.org/10.1103/PhysRevLett.97.191303
  64. 64.
    M. Viel, G.D. Becker, J.S. Bolton, M.G. Haehnelt, M. Rauch, W.L.W. Sargent, Phys. Rev. Lett. 100(4), 041304 (2008).  https://doi.org/10.1103/PhysRevLett.100.041304
  65. 65.
    A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, J. Franse, Phys. Rev. Lett. 113, 251301 (2014).  https://doi.org/10.1103/PhysRevLett.113.251301
  66. 66.
    E. Bulbul, M. Markevitch, A. Foster, R.K. Smith, M. Loewenstein, S.W. Randall, Astrophys. J. 789, 13 (2014).  https://doi.org/10.1088/0004-637X/789/1/13ADSCrossRefGoogle Scholar
  67. 67.
    K.N. Abazajian, Phys. Rev. Lett. 112(16), 161303 (2014).  https://doi.org/10.1103/PhysRevLett.112.161303
  68. 68.
    R. Barkana, Z. Haiman, J.P. Ostriker, APJ 558, 482 (2001).  https://doi.org/10.1086/322393ADSCrossRefGoogle Scholar
  69. 69.
    A. Mesinger, R. Perna, Z. Haiman, APJ 623, 1 (2005).  https://doi.org/10.1086/428770ADSCrossRefGoogle Scholar
  70. 70.
    R.S. de Souza, A. Mesinger, A. Ferrara, Z. Haiman, R. Perna, N. Yoshida, MNRAS 432, 3218 (2013).  https://doi.org/10.1093/mnras/stt674ADSCrossRefGoogle Scholar
  71. 71.
    F. Pacucci, A. Mesinger, Z. Haiman, MNRAS 435, L53 (2013).  https://doi.org/10.1093/mnrasl/slt093ADSCrossRefGoogle Scholar
  72. 72.
    F. Governato, D. Weisz, A. Pontzen, S. Loebman, D. Reed, A.M. Brooks, P. Behroozi, C. Christensen, P. Madau, L. Mayer, S. Shen, M. Walker, T. Quinn, B.W. Keller, J. Wadsley, MNRAS 448, 792 (2015).  https://doi.org/10.1093/mnras/stu2720ADSCrossRefGoogle Scholar
  73. 73.
    A. Chau, L. Mayer, F. Governato, APJ 845, 17 (2017).  https://doi.org/10.3847/1538-4357/aa7e74ADSCrossRefGoogle Scholar
  74. 74.
    D.N. Spergel, P.J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000).  https://doi.org/10.1103/PhysRevLett.84.3760ADSCrossRefGoogle Scholar
  75. 75.
    N. Yoshida, V. Springel, S.D.M. White, G. Tormen, APJL 544, L87 (2000).  https://doi.org/10.1086/317306ADSCrossRefGoogle Scholar
  76. 76.
    J. Miralda-Escudé, APJ 564, 60 (2002).  https://doi.org/10.1086/324138ADSCrossRefGoogle Scholar
  77. 77.
    A.H.G. Peter, M. Rocha, J.S. Bullock, M. Kaplinghat, Mon. Not. Roy. Astron. Soc. 430, 105 (2013).  https://doi.org/10.1093/mnras/sts535ADSCrossRefGoogle Scholar
  78. 78.
    A. Loeb, N. Weiner, Phys. Rev. Lett. 106, 171302 (2011).  https://doi.org/10.1103/PhysRevLett.106.171302
  79. 79.
    O.D. Elbert, J.S. Bullock, S. Garrison-Kimmel, M. Rocha, J. Oñorbe, A.H.G. Peter, Mon. Not. Roy. Astron. Soc. 453(1), 29 (2015).  https://doi.org/10.1093/mnras/stv1470ADSCrossRefGoogle Scholar
  80. 80.
    A.B. Fry, F. Governato, A. Pontzen, T. Quinn, M. Tremmel, L. Anderson, H. Menon, A.M. Brooks, J. Wadsley, MNRAS 452, 1468 (2015).  https://doi.org/10.1093/mnras/stv1330ADSCrossRefGoogle Scholar
  81. 81.
    M. Vogelsberger, J. Zavala, C. Simpson, A. Jenkins, MNRAS 444, 3684 (2014).  https://doi.org/10.1093/mnras/stu1713ADSCrossRefGoogle Scholar
  82. 82.
    G.A. Dooley, A.H.G. Peter, M. Vogelsberger, J. Zavala, A. Frebel, MNRAS 461, 710 (2016).  https://doi.org/10.1093/mnras/stw1309ADSCrossRefGoogle Scholar
  83. 83.
    M.A. Breddels, A. Helmi, R.C.E. van den Bosch, G. van de Ven, G. Battaglia, MNRAS 433, 3173 (2013).  https://doi.org/10.1093/mnras/stt956ADSCrossRefGoogle Scholar
  84. 84.
    M.G. Walker, J. Peñarrubia, APJ 742, 20 (2011).  https://doi.org/10.1088/0004-637X/742/1/20ADSCrossRefGoogle Scholar
  85. 85.
    L.E. Strigari, C.S. Frenk, S.D.M. White, ArXiv e-prints (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyRutgers, the State University of New JerseyPiscatawayUSA

Personalised recommendations