Advertisement

Halometry from Astrometry: New Gravitational Methods to Search for Dark Matter

  • Neal WeinerEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 56)

Abstract

Time domain astronomy offers the possibilty of news lensing searches. By looking for dramatic proper motions, measureable changes in them, or correlations between them, we can infer or constrain the presence of dark objects in our halo, such as black holes, subhalos, or other exotic objects. We consider new search strategies and the possibilities for current and future experiments.

Keywords

Lensing Dark matter Black holes 

Notes

Acknowledgements

This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1748958 and PHY-1620727. The work of NW is supported by the Simons Foundation. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

References

  1. 1.
    M. Battaglieri, et al., (2017)Google Scholar
  2. 2.
    K. Van Tilburg, A.M. Taki, N. Weiner, JCAP 1807(07), 041 (2018).  https://doi.org/10.1088/1475-7516/2018/07/041CrossRefGoogle Scholar
  3. 3.
    Y. Mellier, Ann. Rev. Astron. Astrophys. 37, 127 (1999).  https://doi.org/10.1146/annurev.astro.37.1.127ADSCrossRefGoogle Scholar
  4. 4.
    N. Dalal, C. Kochanek, Astrophys. J. 572(1), 25 (2002)Google Scholar
  5. 5.
    C. Kochanek, N. Dalal, Astrophys. J. 610(1), 69 (2004)Google Scholar
  6. 6.
    M. Hosokawa, K. Ohnishi, T. Fukushima, M. Takeuti, Astron. Astrophys. 278, L27 (1993)Google Scholar
  7. 7.
    E. Hog, I.D. Novikov, A. Polnarev, Astron. Astrophys. 294, 287 (1995)Google Scholar
  8. 8.
    M. Miyamoto, Y. Yoshii, Astron. J. 110, 1427 (1995)Google Scholar
  9. 9.
    M.A. Walker, Astrophys. J. 453, 37 (1995)Google Scholar
  10. 10.
    A. Boden, M. Shao, D. Van Buren, Astrophys. J. 502(2), 538 (1998)Google Scholar
  11. 11.
    M. Dominik, K.C. Sahu, Astrophys. J. 534(1), 213 (2000)Google Scholar
  12. 12.
    P. Ade, N. Aghanim, M. Arnaud, F. Arroja, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. Banday, R. Barreiro et al., Astron. Astrophys. 594, A20 (2016)Google Scholar
  13. 13.
    T. Prusti, J. De Bruijne, A.G. Brown, A. Vallenari, C. Babusiaux, C. Bailer-Jones, U. Bastian, M. Biermann, D. Evans, L. Eyer et al., Astron. Astrophys. 595, A1 (2016)Google Scholar
  14. 14.
    C. Boehm, A. Krone-Martins, A. Amorim, G. Anglada-Escude, A. Brandeker, F. Courbin, T. Ensslin, A. Falcao, K. Freese, B. Holl, et al., (2017), arXiv preprint arXiv:1707.01348
  15. 15.
    M.J. Jarvis, D. Bacon, C. Blake, M.L. Brown, S.N. Lindsay, A. Raccanelli, M. Santos, D. Schwarz, (2015), arXiv preprint arXiv:1501.03825
  16. 16.
    P. Németh, E. Ziegerer, A. Irrgang, S. Geier, F. Fürst, T. Kupfer, U. Heber, ApJ 821, L13 (2016).  https://doi.org/10.3847/2041-8205/821/1/L13ADSCrossRefGoogle Scholar
  17. 17.
    Á. Moliné, M.A. Sánchez-Conde, S. Palomares-Ruiz, F. Prada, Mon. Notices R. Astron. Soc. 466(4), 4974 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physics, Center for Cosmology and Particle PhysicsNew York UniversityNew YorkUSA

Personalised recommendations