Illuminating Dark Matter pp 143-152 | Cite as
Indirect Probes of Light Dark Matter
Abstract
So far, dark matter has only been discovered gravitationally, while its particle identity remains unknown. It is possible that dark matter is so weakly coupled to the visible sector that a direct nongravitational interaction lies well beyond our experimental reach. It is then interesting to ask to what extent indirect probes of dark matter can point to a specific particle physics description. In this note, we discuss two such examples: The first is via 21 cm cosmology and the second is via the study of AGN and black hole growth rate.
Notes
Acknowledgements
I would like to thank the organizers of this symposium and the Simon’s foundation for producing this unique meeting. I would also like to thank my collaborators on these projects: Rennan Barkana, Nadav Outmezguine, Oren Slone, Diego Redigolo, Walter Tangarife, and Lorenzo Ubaldi. This work is supported in part by the I-CORE Program of the Planning Budgeting Committee and the Israel Science Foundation (grant No. 1937/12), by the Israel Science Foundation-NSFC (grant No. 2522/17), by the German-Israeli Foundation (grant No. I-1283-303.7/2014), by the Binational Science Foundation (grant No. 2016153) and by a grant from the Ambrose Monell Foundation, given by the Institute for Advanced Study.
References
- 1.D.N. Spergel, P.J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000). https://doi.org/10.1103/PhysRevLett.84.3760ADSCrossRefGoogle Scholar
- 2.S. Tulin, H.B. Yu, K.M. Zurek, Phys. Rev. D 87, 115007 (2013). https://doi.org/10.1103/PhysRevD.87.115007
- 3.M. Kaplinghat, S. Tulin, H.B. Yu, Phys. Rev. Lett. 116(4), 041302 (2016). https://doi.org/10.1103/PhysRevLett.116.041302
- 4.R. Barkana, N.J. Outmezguine, D. Redigolo, T. Volansky, Phys. Rev. D 98, 103005 (2018). https://doi.org/10.1103/PhysRevD.98.103005
- 5.J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen, N. Mahesh, Nature 555(7694), 67 (2018). https://doi.org/10.1038/nature25792. URL http://www.nature.com/doifinder/10.1038/nature25792ADSCrossRefGoogle Scholar
- 6.N.J. Outmazgine, O. Slone, W. Tangarife, L. Ubaldi, T. Volansky, JHEP 1811, 005 (2018). https://doi.org/10.1007/JHEP11(2018)005
- 7.P. Madau, A. Meiksin, M.J. Rees, Astrophys. J. 475, 429 (1997). https://doi.org/10.1086/303549ADSCrossRefGoogle Scholar
- 8.H. Tashiro, K. Kadota, J. Silk, Phys. Rev. D 90(8), 083522 (2014). https://doi.org/10.1103/PhysRevD.90.083522ADSCrossRefGoogle Scholar
- 9.J.B. Muñoz, E.D. Kovetz, Y. Ali-Haïmoud, Phys. Rev. D 92(8), 083528 (2015). https://doi.org/10.1103/PhysRevD.92.083528ADSCrossRefGoogle Scholar
- 10.H. Netzer, The Physics and Evolution of Active Galactic Nuclei (2013)Google Scholar
- 11.D.M. Alexander, R.C. Hickox, New Astron. Rev. 56, 93 (2012). https://doi.org/10.1016/j.newar.2011.11.003ADSCrossRefGoogle Scholar
- 12.M.A. Latif, A. Ferrara, Publ. Astron. Soc. Austral. 33, e051 (2016). https://doi.org/10.1017/pasa.2016.41ADSCrossRefGoogle Scholar
- 13.S.L. Shapiro, Astrophys. J. 620, 59 (2005). https://doi.org/10.1086/427065ADSCrossRefGoogle Scholar
- 14.E.E. Salpeter, Astrophys. J. 140, 796 (1964). https://doi.org/10.1086/147973ADSCrossRefGoogle Scholar
- 15.B. Trakhtenbrot, H. Netzer, P. Lira, O. Shemmer, Astrophys. J. 730, 7 (2011). https://doi.org/10.1088/0004-637X/730/1/7ADSCrossRefGoogle Scholar