Advertisement

Indirect Probes of Light Dark Matter

  • Tomer VolanskyEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 56)

Abstract

So far, dark matter has only been discovered gravitationally, while its particle identity remains unknown. It is possible that dark matter is so weakly coupled to the visible sector that a direct nongravitational interaction lies well beyond our experimental reach. It is then interesting to ask to what extent indirect probes of dark matter can point to a specific particle physics description. In this note, we discuss two such examples: The first is via 21 cm cosmology and the second is via the study of AGN and black hole growth rate.

Notes

Acknowledgements

I would like to thank the organizers of this symposium and the Simon’s foundation for producing this unique meeting. I would also like to thank my collaborators on these projects: Rennan Barkana, Nadav Outmezguine, Oren Slone, Diego Redigolo, Walter Tangarife, and Lorenzo Ubaldi. This work is supported in part by the I-CORE Program of the Planning Budgeting Committee and the Israel Science Foundation (grant No. 1937/12), by the Israel Science Foundation-NSFC (grant No. 2522/17), by the German-Israeli Foundation (grant No. I-1283-303.7/2014), by the Binational Science Foundation (grant No. 2016153) and by a grant from the Ambrose Monell Foundation, given by the Institute for Advanced Study.

References

  1. 1.
    D.N. Spergel, P.J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000).  https://doi.org/10.1103/PhysRevLett.84.3760ADSCrossRefGoogle Scholar
  2. 2.
    S. Tulin, H.B. Yu, K.M. Zurek, Phys. Rev. D 87, 115007 (2013).  https://doi.org/10.1103/PhysRevD.87.115007
  3. 3.
    M. Kaplinghat, S. Tulin, H.B. Yu, Phys. Rev. Lett. 116(4), 041302 (2016).  https://doi.org/10.1103/PhysRevLett.116.041302
  4. 4.
    R. Barkana, N.J. Outmezguine, D. Redigolo, T. Volansky, Phys. Rev. D 98, 103005 (2018). https://doi.org/10.1103/PhysRevD.98.103005
  5. 5.
    J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen, N. Mahesh, Nature 555(7694), 67 (2018).  https://doi.org/10.1038/nature25792. URL http://www.nature.com/doifinder/10.1038/nature25792ADSCrossRefGoogle Scholar
  6. 6.
    N.J. Outmazgine, O. Slone, W. Tangarife, L. Ubaldi, T. Volansky, JHEP 1811, 005 (2018). https://doi.org/10.1007/JHEP11(2018)005
  7. 7.
    P. Madau, A. Meiksin, M.J. Rees, Astrophys. J. 475, 429 (1997).  https://doi.org/10.1086/303549ADSCrossRefGoogle Scholar
  8. 8.
    H. Tashiro, K. Kadota, J. Silk, Phys. Rev. D 90(8), 083522 (2014).  https://doi.org/10.1103/PhysRevD.90.083522ADSCrossRefGoogle Scholar
  9. 9.
    J.B. Muñoz, E.D. Kovetz, Y. Ali-Haïmoud, Phys. Rev. D 92(8), 083528 (2015).  https://doi.org/10.1103/PhysRevD.92.083528ADSCrossRefGoogle Scholar
  10. 10.
    H. Netzer, The Physics and Evolution of Active Galactic Nuclei (2013)Google Scholar
  11. 11.
    D.M. Alexander, R.C. Hickox, New Astron. Rev. 56, 93 (2012).  https://doi.org/10.1016/j.newar.2011.11.003ADSCrossRefGoogle Scholar
  12. 12.
    M.A. Latif, A. Ferrara, Publ. Astron. Soc. Austral. 33, e051 (2016).  https://doi.org/10.1017/pasa.2016.41ADSCrossRefGoogle Scholar
  13. 13.
    S.L. Shapiro, Astrophys. J. 620, 59 (2005).  https://doi.org/10.1086/427065ADSCrossRefGoogle Scholar
  14. 14.
    E.E. Salpeter, Astrophys. J. 140, 796 (1964).  https://doi.org/10.1086/147973ADSCrossRefGoogle Scholar
  15. 15.
    B. Trakhtenbrot, H. Netzer, P. Lira, O. Shemmer, Astrophys. J. 730, 7 (2011).  https://doi.org/10.1088/0004-637X/730/1/7ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Raymond and Beverly Sackler School of Physics and AstronomyTel-Aviv UniversityTel Aviv-YafoIsrael

Personalised recommendations