Advertisement

Primordial Black Holes as Dark Matter: New Formation Scenarios and Astrophysical Effects

  • Alexander KusenkoEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 56)

Abstract

Scalar field instability can lead to a short matter dominated era, during which the matter is represented by large lumps of the scalar field, whose distribution exhibits large fluctuations, leading to copious production of primordial black holes (PBH). The PBH abundance can be sufficient to explain up to 100% of dark matter without violating observational constraints. Small PBH can destabilize neutron stars and contribute to r-process nucleosynthesis.

Notes

Acknowledgements

I thank the Simons Foundation for support and hospitality of the Simons Symposium, which stimulated many new ideas, including a new project that K. Abazajian and I have started at Schloss Elmau. This work was supported by the U.S. Department of Energy Grant No. DE - SC0009937 as well as World Premier International (WPI) Initiative, MEXT, Japan.

References

  1. 1.
    Y.B. Zel’dovich, I.D. Novikov, Sov. Astron. 10, 602 (1967)ADSGoogle Scholar
  2. 2.
    S. Hawking, Mon. Not. Roy. Astron. Soc. 152, 75 (1971)ADSCrossRefGoogle Scholar
  3. 3.
    B.J. Carr, S.W. Hawking, Mon. Not. Roy. Astron. Soc. 168, 399 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    J. Garcia-Bellido, A.D. Linde, D. Wands, Phys. Rev. D 54, 6040 (1996).  https://doi.org/10.1103/PhysRevD.54.6040ADSCrossRefGoogle Scholar
  5. 5.
    P.H. Frampton, M. Kawasaki, F. Takahashi, T.T. Yanagida, JCAP 1004, 023 (2010).  https://doi.org/10.1088/1475-7516/2010/04/023ADSCrossRefGoogle Scholar
  6. 6.
    K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada, T.T. Yanagida (2016) Google Scholar
  7. 7.
    R. Bean, J. Magueijo, Phys. Rev. D 66, 063505 (2002).  https://doi.org/10.1103/PhysRevD.66.063505ADSCrossRefGoogle Scholar
  8. 8.
    M. Kawasaki, A. Kusenko, T.T. Yanagida, Phys. Lett. B 711, 1 (2012).  https://doi.org/10.1016/j.physletb.2012.03.056ADSCrossRefGoogle Scholar
  9. 9.
    S. Clesse, J. García-Bellido, Phys. Rev. D 92(2), 023524 (2015).  https://doi.org/10.1103/PhysRevD.92.023524ADSCrossRefGoogle Scholar
  10. 10.
    A.D. Dolgov, Usp. Fiz. Nauk 188(2), 121 (2018). https://doi.org/10.3367/UFNe.2017.06.038153. [Phys. Usp.61,no.2,115(2018)]ADSCrossRefGoogle Scholar
  11. 11.
    S. Clesse, J. García-Bellido, Phys. Dark Univ. 15, 142 (2017).  https://doi.org/10.1016/j.dark.2016.10.002CrossRefGoogle Scholar
  12. 12.
    S. Bird, I. Cholis, J.B. Muñoz, Y. Ali-Haïmoud, M. Kamionkowski, E.D. Kovetz, A. Raccanelli, A.G. Riess, Phys. Rev. Lett. 116(20), 201301 (2016).  https://doi.org/10.1103/PhysRevLett.116.201301ADSCrossRefGoogle Scholar
  13. 13.
    M. Sasaki, T. Suyama, T. Tanaka, S. Yokoyama, Phys. Rev. Lett.117(6), 061101 (2016). https://doi.org/10.1103/PhysRevLett.121.059901,  https://doi.org/10.1103/PhysRevLett.117.061101. [Erratum: Phys. Rev. Lett.121,no.5,059901(2018)]
  14. 14.
  15. 15.
    MYu. Khlopov, Res. Astron. Astrophys. 10, 495 (2010).  https://doi.org/10.1088/1674-4527/10/6/001ADSCrossRefGoogle Scholar
  16. 16.
    B. Carr, T. Tenkanen, V. Vaskonen, Phys. Rev. D 96(6), 063507 (2017).  https://doi.org/10.1103/PhysRevD.96.063507ADSCrossRefGoogle Scholar
  17. 17.
    A. Kusenko, M.E. Shaposhnikov, Phys. Lett. B 418, 46 (1998).  https://doi.org/10.1016/S0370-2693(97)01375-0ADSCrossRefGoogle Scholar
  18. 18.
    T.S. Bunch, P.C.W. Davies, Proc. Roy. Soc. Lond. A360, 117 (1978).  https://doi.org/10.1098/rspa.1978.0060ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
    A.A. Starobinsky, J. Yokoyama, Phys. Rev. D 50, 6357 (1994).  https://doi.org/10.1103/PhysRevD.50.6357ADSCrossRefGoogle Scholar
  21. 21.
    M. Dine, A. Kusenko, Rev. Mod. Phys. 76, 1 (2003).  https://doi.org/10.1103/RevModPhys.76.1ADSCrossRefGoogle Scholar
  22. 22.
    E. Cotner, A. Kusenko (2016)Google Scholar
  23. 23.
    E. Cotner, A. Kusenko, Phys. Rev. D 96(10), 103002 (2017).  https://doi.org/10.1103/PhysRevD.96.103002ADSCrossRefGoogle Scholar
  24. 24.
    F. Hasegawa, M. Kawasaki (2018)Google Scholar
  25. 25.
    A.G. Polnarev, M. Yu. Khlopov, Sov. Phys. Usp. 28, 213 (1985). https://doi.org/10.1070/PU1985v028n03ABEH003858. [Usp.Fiz.Nauk145,369(1985)]ADSCrossRefGoogle Scholar
  26. 26.
    E. Cotner, A. Kusenko, V. Takhistov (2018)Google Scholar
  27. 27.
    G.M. Fuller, A. Kusenko, V. Takhistov, Phys. Rev. Lett. 119(6), 061101 (2017).  https://doi.org/10.1103/PhysRevLett.119.061101ADSCrossRefGoogle Scholar
  28. 28.
    C. Kouvaris, P. Tinyakov, Phys. Rev. D 90(4), 043512 (2014).  https://doi.org/10.1103/PhysRevD.90.043512ADSCrossRefGoogle Scholar
  29. 29.
    A.P. Ji, A. Frebel, A. Chiti, J.D. Simon, Nature 531, 610 (2016).  https://doi.org/10.1038/nature17425ADSCrossRefGoogle Scholar
  30. 30.
  31. 31.
    R. Takahashi, T. Nakamura, Astrophys. J. 595, 1039 (2003).  https://doi.org/10.1086/377430ADSCrossRefGoogle Scholar
  32. 32.
    N. Matsunaga, K. Yamamoto, JCAP 0601, 023 (2006).  https://doi.org/10.1088/1475-7516/2006/01/023ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesUSA
  2. 2.Kavli Institute for the Physics and Mathematics of the Universe (WPI)UTIAS The University of TokyoKashiwaJapan

Personalised recommendations