A Flexible Replication-Based Classification Approach for Parkinson’s Disease Detection by Using Voice Recordings

  • Lizbeth Naranjo
  • Ruth Fuentes-GarcíaEmail author
  • Carlos J. Pérez
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 301)


Detecting Parkinson’s disease (PD) by using a noninvasive low-cost tool based on acoustic features automatically extracted from voice recordings has become a topic of interest. A two-stage classification approach has been developed to differentiate PD subjects from healthy people by using acoustic features obtained from replicated voice recordings. The proposed hierarchical model has been specifically developed to handle replicated data and considers a dimensional reduction of the feature space as well as the use of mixtures of normal distributions to describe the latent variables in the second order of hierarchy. The approach has been applied to a database of acoustic features obtained from 40 PD subjects and 40 healthy controls, improving results compared to previous models.


Bayesian binary hierarchical model Common principal components Mixtures of normal distributions Parkinson’s disease Replicated measurements Voice recordings 



Thanks to the anonymous participants and to Carmen Bravo and Rosa María Muñoz for carrying out the voice recordings and providing information from the people with PD. We are grateful to the Asociación Regional de Parkinson de Extremadura and Confederación Española de Personas con Discapacidad Física y Orgánica for providing support in the experiment development.

      This research has been supported by UNAM-DGAPA-PAPIIT, Mexico (Project IA106416), Ministerio de Economía, Industria y Competitividad, Spain (Projects MTM2014-56949-C3-3-R and MTM2017-86875-C3-2-R), Junta de Extremadura, Spain (Projects IB16054 and GRU18108), and the European Union (European Regional Development Funds).


  1. 1.
    Buonaccorsi, J.P.: Measurement Error: Models. Methods and Applications. Chapman and Hall/CRC, Boca Raton, FL (2010)Google Scholar
  2. 2.
    Carroll, R.J., Roeder, K., Wasserman, L.: Flexible parametric measurement error models. Biometrics 55(1), 44–54 (1999)CrossRefGoogle Scholar
  3. 3.
    Carroll, R.J., Ruppert, D., Stefanski, L.A., Crainiceanu, C.M.: Measurement Error in Nonlinear Models: A Modern Perspective, 2nd edn. Chapman and Hall/CRC, Boca Raton, FL (2006)CrossRefGoogle Scholar
  4. 4.
    Chen, M.H., Shao, Q.M., Ibrahim, J.G.: Monte Carlo Methods in Bayesian Computation. Series in Statistics. Springer, Berlin (2000)Google Scholar
  5. 5.
    Diebolt, J., Robert, C.P.: Estimation of finite mixture distributions through Bayesian sampling. J. R. Stat. Soc. Ser. B (Methodol.) 56(2), 363–375 (1994)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Flury, B.: Common Principal Components and Related Models. Wiley, New York (1988)Google Scholar
  7. 7.
    Flury, B.N.: Common principal components analysis in K groups. J. Am. Stat. Assoc. 79(388), 892–898 (1984)Google Scholar
  8. 8.
    Flury, B.N.: Theory for common principal component analysis. Ann. Stat. 14(2), 418–430 (1986)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Harel, B., Cannizzaro, M., Snyder, P.J.: Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: a longitudinal case study. Brain Cogn. 56(1), 24–29 (2004)CrossRefGoogle Scholar
  10. 10.
    Hariharan, M., Polat, K., Sindhu, R.: A new hybrid intelligent system for accurate detection of Parkinson’s disease. Comput. Methods Programs Biomed. 113(3), 904–913 (2014)CrossRefGoogle Scholar
  11. 11.
    Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)Google Scholar
  12. 12.
    Little, M.A., McSharry, P.E., Hunter, E.J., Spielman, J., Ramig, L.O.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 56(4), 1015–1022 (2009)CrossRefGoogle Scholar
  13. 13.
    Lykou, A., Ntzoufras, I.: On Bayesian LASSO variable selection and the specification of the shrinkage parameter. Stat. Comput. 23(3), 361–390 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions, 2nd edn. Wiley, New York (2007)Google Scholar
  15. 15.
    Naranjo, L., Pérez, C.J., Campos-Roca, Y., Martín, J.: Addressing voice recording replications for Parkinson’s disease detection. Expert Syst. Appl. 46, 286–292 (2016)CrossRefGoogle Scholar
  16. 16.
    Naranjo, L., Pérez, C.J., Martín, J., Campos-Roca, Y.: A two-stage variable selection and classification approach for Parkinson’s disease detection by using voice recording replications. Comput. Methods Programs Biomed. 142, 147–156 (2017)CrossRefGoogle Scholar
  17. 17.
    O’Hara, R.B., Sillanpää, M.J.: A review of Bayesian variable selection methods: what, how and which. Bayesian Anal. 4(1), 85–118 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Orozco-Arroyave, J.R., Arias-Londoño, J.D., Vargas-Bonilla, J.F., Nöth, E.: Analysis of speech from people with Parkinson’s disease through nonlinear dynamics. In: Drugman, T., Dutoit, T. (eds.) Advances in Nonlinear Speech Processing. Lecture Notes in Artificial Intelligence, vol. LNAI 7911, pp. 112–119. Springer, Berlin (2013)CrossRefGoogle Scholar
  19. 19.
    Pahuja, G., Nagabhushan, T.N.: A comparative study of existing machine learning approaches for Parkinson’s disease detection. IETE J. Res. 1–11 (2018)Google Scholar
  20. 20.
    Park, T., Casella, G.: The Bayesian LASSO. J. Am. Stat. Assoc. 103(482), 681–686 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Pérez, C.J., Naranjo, L., Martín, J., Campos-Roca, Y.: A latent variable-based Bayesian regression to address recording replication in Parkinson’s disease. In: EURASIP: Proceedings of the 22nd European Signal Processing Conference (EUSIPCO-2014), pp. 1447–1451. IEEE, Lisbon, Portugal (2014)Google Scholar
  22. 22.
    Plummer, M.: Penalized loss functions for Bayesian model comparison. Biostatistics 9(3), 523–539 (2008)CrossRefGoogle Scholar
  23. 23.
    Richardson, S., Green, P.J.: On Bayesian analysis of mixtures with an unknown number of components. J. R. Stat. Soc. Ser B (Methodol.) 59(4), 731–792 (1997)Google Scholar
  24. 24.
    Rockova, V., Lesaffre, E., Luime, J., Löwenberg, B.: Hierarchical Bayesian formulations for selecting variables in regression models. Stat. Med. 31, 1221–1237 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Roeder, K., Wasserman, L.: Practical Bayesian density estimation using mixtures of normals. J. Am. Stat. Assoc. 92(439), 894–902 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Saifer, A., Ali, D.S.M.: A review on Parkinson’s disease diagnosis through speech. Int. J. Sci. Res. Sci. Technol. 4(5), 36–45 (2018)Google Scholar
  27. 27.
    Smith, B.J.: BOA: an R package for MCMC output convergence assessment and posterior inference. J. Stat. Softw. 21(11), 1–37 (2007)CrossRefGoogle Scholar
  28. 28.
    Spiegelhalter, D., Best, N., Carlin, B., van der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B 64, 583–639 (2002)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Tsanas, A., Little, M.A., McSharry, P.E., Spielman, J., Ramig, L.O.: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans. Biomed. Eng. 59(5), 1264–1271 (2012)CrossRefGoogle Scholar
  30. 30.
    Tysnes, O.B., Storstein, A.: Epidemiology of Parkinson’s disease. J. Neural Transm. 124(8), 901–905 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lizbeth Naranjo
    • 1
  • Ruth Fuentes-García
    • 1
    Email author
  • Carlos J. Pérez
    • 2
  1. 1.Departamento de Matemáticas, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Departamento de Matemáticas, Facultad de VeterinariaUniversidad de ExtremaduraCáceresSpain

Personalised recommendations