Compound Dirichlet Processes

  • Arrigo CoenEmail author
  • Beatriz Godínez-Chaparro
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 301)


The compound Poisson process and the Dirichlet process are the pillar structures of renewal theory and Bayesian nonparametric theory, respectively. Both processes have many useful extensions to fulfill the practitioners’ needs to model the particularities of data structures. Accordingly, in this contribution, we join their primal ideas to construct the compound Dirichlet process and the compound Dirichlet process mixture. As a consequence, these new processes have a rich structure to model the time occurrence among events, with also a flexible structure on the arrival variables. These models have a direct Bayesian interpretation of their posterior estimators and are easy to implement. We obtain expressions of posterior distribution, nonconditional distribution, and expected values. In particular, to find these formulas, we analyze sums of random variables with Dirichlet process priors. We assess our approach by applying our model on a real data example of a contagious zoonotic disease.


Bayesian nonparametrics Renewal theory Compound poisson process Dirichlet process Random sums 



We thank the editor and two anonymous reviewers for their useful comments which significantly improved the presentation and quality of the paper. The first author is grateful to Prof. Ramsés Mena for the valuable suggestions on an earlier version of the manuscript. This research was partially supported by a DGAPA Postdoctoral Scholarship.


  1. 1.
    Aldous, D.J.: Exchangeability and related topics. In: École d’Été de Probabilités de Saint-Flour XIII 1983, pp. 1–198. Springer, Berlin (1985). Scholar
  2. 2.
    Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Analysis. Lecture Notes in Statistics, vol. 151. Springer, New York, NY (2000)CrossRefGoogle Scholar
  3. 3.
    Blackwell, D., MacQueen, J.B.: Ferguson distributions via polya urn schemes. Ann. Stat. (1973). Scholar
  4. 4.
    Bladt, M., Nielsen, B.F.: Matrix-Exponential Distributions in Applied Probability. Probability Theory and Stochastic Modelling, vol. 81. Springer, Boston (2017). Scholar
  5. 5.
    Brauer, F., van den Driessche, P., Wu, J. (eds.): Mathematical Epidemiology. Lecture Notes in Mathematics, vol. 1945. Springer, Heidelberg (2008). Scholar
  6. 6.
    Bulla, P., Muliere, P.: Bayesian nonparametric estimation for reinforced markov renewal processes. Stat. Inference Stoch. Process. 10(3), 283–303 (2007). Scholar
  7. 7.
    Coen, A., Gutierrez, L., Mena, R.H.: Modeling failures times with dependent renewal type models via exchangeability. Submited (2018)Google Scholar
  8. 8.
    Coen, A., Mena, R.H.: Ruin probabilities for Bayesian exchangeable claims processes. J. Stat. Plan. Inference 166, 102–115 (2015). Scholar
  9. 9.
    Cori, A., Nouvellet, P., Garske, T., Bourhy, H., Nakouné, E., Jombart, T.: A graph-based evidence synthesis approach to detecting outbreak clusters: an application to dog rabies. PLOS Comput. Biol. 14(12), e1006554 (2018). Scholar
  10. 10.
    Doksum, K.: Tailfree and neutral random probabilities and their posterior distributions. Ann. Probab. 2(2), 183–201 (1974)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Escobar, M.D.: Estimating normal means with a Dirichlet process prior. J. Am. Stat. Assoc. (1994). Scholar
  12. 12.
    Escobar, M.D., West, M.: Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 90(430), 577 (1995). Scholar
  13. 13.
    Escobar, M.D., West, M.: Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. (1995). Scholar
  14. 14.
    Ewens, W.J.: The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3(1), 87–112 (1972). Scholar
  15. 15.
    Ferguson, T.S.: A bayesian analysis of some nonparametric problems. Ann. Stat. 1(2), 209–230 (1973). Scholar
  16. 16.
    Ferguson, T.S.: Bayesian density estimation by mixtures of normal distributions. Recent Advances in Statistics, pp. 287–302 (1983). Scholar
  17. 17.
    Frees, E.W.: Nonparametric renewal function estimation. Ann. Stat. 14(4), 1366–1378 (1986). Scholar
  18. 18.
    Gebizlioglu, O.L., Eryilmaz, S.: The maximum surplus in a finite-time interval for a discrete-time risk model with exchangeable, dependent claim occurrences. Appl. Stoch. Model. Bus. Ind. (2018). Scholar
  19. 19.
    Ghosal, S., van der Vaart, A.: Posterior convergence rates of Dirichlet mixtures at smooth densities. Ann. Stat. 35(2), 697–723 (2007). Scholar
  20. 20.
    Görür, D., Rasmussen, C.E.: Dirichlet process gaussian mixture models: choice of the base distribution. J. Comput. Sci. Technol. (2010). Scholar
  21. 21.
    Ishwaran, H., James, L.F.: Gibbs sampling methods for stick-breaking priors. J. Am. Stat. Assoc. (2001). Scholar
  22. 22.
    Kingman, J.F.C.: Poisson Processes. Oxford Studies in Probability. Clarendon Press, Oxford (1992)Google Scholar
  23. 23.
    Korwar, R.M., Hollander, M.: Contributions to the theory of dirichlet processes. Ann. Probab. 1(4), 705–711 (1973). Scholar
  24. 24.
    Kovalenko, I.N., Pegg, P.A.: Mathematical Theory of Reliability of Time Dependent Systems With Practical Applications. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley, Hoboken (1997)Google Scholar
  25. 25.
    Lenk, P.J.: The logistic normal distribution for bayesian, nonparametric, predictive densities. J. Am. Stat. Assoc. 83(402), 509 (1988). Scholar
  26. 26.
    Lijoi, A., Mena, R.H., Prünster, I.: Bayesian nonparametric analysis for a generalized dirichlet process prior. Stat. Inference Stoch. Process. 8(3), 283–309 (2005). Scholar
  27. 27.
    Lo, A.Y.: On a class of bayesian nonparametric estimates: I. density estimates. Ann. Stat. 12(1), 351–357 (1984). Scholar
  28. 28.
    Maceachern, S.N., Müller, P.: Estimating mixture of dirichlet process models. J. Comput. Graph. Stat. (1998). Scholar
  29. 29.
    Nadarajah, S., Li, R.: The exact density of the sum of independent skew normal random variables. J. Comput. Appl. Math. 311, 1–10 (2017). Scholar
  30. 30.
    Nadarajaha, S., Chanb, S.: The exact distribution of the sum of stable random variables. J. Comput. Appl. Math. 349, 187–196 (2019). Scholar
  31. 31.
    Neal, R.M.: Markov chain sampling methods for dirichlet process mixture models. J. Comput. Graph. Stat. (2000). Scholar
  32. 32.
    Pitman, J.: Some developments of the Blackwell-MacQueen urn scheme. In: Statistics, Probability and Game Theory, pp. 245–267. Institute of Mathematical Statistics, Beachwood (1996). Scholar
  33. 33.
    Pitman, J.: Poisson-Kingman partitions. In: Statistics and Science: A Festschrift for Terry Speed, pp. 1–34. Institute of Mathematical Statistics, Beachwood (2003). Scholar
  34. 34.
    Prünster, I., Lijoi, A., Regazzini, E.: Distributional results for means of normalized random measures with independent increments. Ann. Stat. 31(2), 560–585 (2003). Scholar
  35. 35.
    Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic processes for insurance and finance. Wiley Series in Probability and Statistics. Wiley, Chichester (1999). Scholar
  36. 36.
    Tokdar, S.T.: Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression. Sankhy Indian J. Stat. (2003–2007) 68(1), 90–110 (2006)Google Scholar
  37. 37.
    Webber, R.: Communicable Disease Epidemiology and Control: A Global Perspective. Modular Texts, Cabi (2009)CrossRefGoogle Scholar
  38. 38.
    World Health Organization: WHO Expert Consultation on Rabies: Third Report. World Health Organization, Geneva (2018). 92 4 120931 3Google Scholar
  39. 39.
    Xiao, S., Kottas, A., Sansó, B.: Modeling for seasonal marked point processes: an analysis of evolving hurricane occurrences. Ann. Appl. Stat. 9(1), 353–382 (2015). Scholar
  40. 40.
    Ypma, R.J.F., Donker, T., van Ballegooijen, W.M., Wallinga, J.: Finding evidence for local transmission of contagious disease in molecular epidemiological datasets. PLoS ONE 8(7), e69875 (2013). Scholar
  41. 41.
    Zhang, C.H.: Estimation of sums of random variables: examples and information bounds. Ann. Stat. 33(5), 2022–2041 (2005). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias, Departamento de MatemáticasUniversidad Nacional Autónoma de MéxicoMexico, CDMXMexico
  2. 2.Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana–XochimilcoMexico CityMexico

Personalised recommendations