On a Construction of Stationary Processes via Bilateral Matrix-Exponential Distributions

  • Luz Judith R. EsparzaEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 301)


In this paper, we consider a construction of Markov processes with invariant Bilateral Matrix-Exponential distributions. These distributions have support on the entire real line and have rational moment-generating functions, features of importance in the area of stochastic models. The approach taken is based on a latent representation of the corresponding transition probabilities. The structure of the construction goes from the particular to the general: first, we consider Erlang and Gamma distributions, and later we consider Matrix-Exponential distributions. We include a simulation study.


Bilateral matrix Markov process 



The author gratefully acknowledges the support of a CONACyT postdoctoral fellowship at IIMAS that gave origin to the present work.


  1. 1.
    Ahn, S., Ramaswami, V.: Bilateral Phase-type distributions. Stoch. Model. 21, 239–259 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Asmussen, S., Bladt, M.: Renewal theory and queueing algorithms for Matrix-Exponential distributions. Matrix-Analytic Methods in Stochastic Models, pp. 313–341 (1997)CrossRefGoogle Scholar
  3. 3.
    Asmussen, S., O’ Cinneide, C.A.: Matrix-Exponential Distributions. Encyclopedia of Statistical Sciences. Wiley Online Library, Hoboken (1998)Google Scholar
  4. 4.
    Barndorff-Nielsen, O.E.: Exponentially decreasing distributions for the logarithm of particle size. Proc. R. Soc. Lond. 353, 401–419 (1977)CrossRefGoogle Scholar
  5. 5.
    Bean, N.G., Nielsen, B.F.: Quasi-Birth-and-Death process with rational arrival process components. Stoch. Model. 26, 309–334 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bladt, M., Nielsen, B.F.: Multivariate matrix-exponential distributions. Stoch. Model. 1(26), 1–26 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bladt, M., Nielsen, B.F.: On the representation of distributions with rational moment generating functions. Kgs. Lyngby: Technical University of Denmark (DTU). (DTU Compute. Technical Report; No. 2012–16) (2012)Google Scholar
  8. 8.
    Bladt, M., Neuts, M.F.: Matrix-exponential distributions: calculus and interpretations via flows. Stoch. Model. 19, 113–124 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bladt M., Esparza L.J.R., Nielsen B.F.: Bilateral Matrix-Exponential Distributions. In: Latouche G., Ramaswami V., Sethuraman J., Sigman K., Squillante M., Yao D. (eds.) Matrix-Analytic Methods in Stochastic Models. Springer Proceedings in Mathematics & Statistics, vol. 27. Springer, New York, NY (2013)Google Scholar
  10. 10.
    Kulkarni, V.G.: A new class of multivariate phase-type distributions. Oper. Res. 37, 151–158 (1989)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mena, R.H., Walker, S.G.: On the stationary version of the generalized hyperbolic ARCH model. AISM 59, 325–348 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mena, R.H., Walker, S.G.: On a construction of Markov models in continuous time. Int. J. Stat. 3(LXVII), 303–323 (2009)Google Scholar
  13. 13.
    Neuts, M.F.: Probability distributions of phase-type. In: Liber Amicorum Prof. Emeritus H. Florin, pp. 173–206 (1975)Google Scholar
  14. 14.
    Neuts, M.F.: Matrix Geometric Solutions in Stochastic Models, vol. 2. Johns Hopkins University Press, Baltimore, MD (1981)Google Scholar
  15. 15.
    Pitt, M., Chatfield, C., Walker, S.G.: Constructing first order autoregressive models via latent processes. Scand. J. Stat. 29, 657–663 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cátedra CONACyTUniversidad Autónoma ChapingoTexcocoMexico

Personalised recommendations