Chapter 25: Peptide Drug/Device Combinations

  • Shahid UddinEmail author
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 35)


Peptides play an important role in human physiology, and peptide deficiencies or dysfunction can lead to disease or illness. Therefore, the role that peptides play in disease treatment goes back many years, starting with the use of insulin in patients with type 1 diabetes almost a century ago. The range of targets available for peptide therapeutics and the limitations associated with peptide delivery and therapeutic effect require consideration. This chapter will review the history of the use of peptides as therapeutics, address some challenges in clinical use, and touch on major advances in the use of peptides as drugs. It will also address issues related with formulation and formulation development; peptide bond formation methods; the use of excipients; the synthesis of peptides, as well as aggregation, separation, and purification; and characterisation and stability testing. It further explores the pharmacokinetics of peptides and various routes of drug delivery and challenges related to peptide delivery.


Peptides Formulation Excipients Aggregation Synthesis Separation Purification Characterisation Stability Pharmacokinetics Delivery Delivery systems Enteral delivery Parenteral Intranasal Lipohypertrophy Devices 


  1. 1.
    Agarwal P, Rupenthal ID. Injectable implants for the sustained release of protein and peptide drugs. Drug Discov Today. 2013;18(7):337–49.CrossRefGoogle Scholar
  2. 2.
    Ahrens VM, Bellmann-Sickert K, Beck-Sickinger AG. Peptides and peptide conjugates: therapeutics on the upward path. Future. 2012;4(12):1567–86.Google Scholar
  3. 3.
    Akers MJ. Sterile drug products: formulation, packaging, manufacturing and quality, vol. 208. London: CRC Press; 2016.CrossRefGoogle Scholar
  4. 4.
    Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.CrossRefGoogle Scholar
  5. 5.
    Ashby M, Petkova A, Gani J, Mikut R, Hilpert K. Use of peptide libraries for identification and optimization of novel antimicrobial peptides. Curr Top Med Chem. 2017;17(5):537–53.CrossRefGoogle Scholar
  6. 6.
    Bak A, Leung D, Barrett SE, Forster S, Minnihan EC, Leithead AW, Crocker LS. Physicochemical and formulation developability assessment for therapeutic peptide delivery—a primer. AAPS J. 2015;17(1):144–55.CrossRefGoogle Scholar
  7. 7.
    Banga AK. Therapeutic peptides and proteins: formulation, processing, and delivery systems. London: CRC Press; 2015.CrossRefGoogle Scholar
  8. 8.
    Baumann A. Early development of therapeutic biologics-pharmacokinetics. Curr Drug Metab. 2006;7(1):15–21.CrossRefGoogle Scholar
  9. 9.
    Benoiton NL. Chemistry of peptide synthesis. London: CRC Press; 2016.CrossRefGoogle Scholar
  10. 10.
    Birr C. Aspects of the Merrifield peptide synthesis, vol. 8. London: Springer; 2012.Google Scholar
  11. 11.
    Bodanszky M. Principles of peptide synthesis, vol. 16. London: Springer; 2012.Google Scholar
  12. 12.
    Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013;4(11):1.CrossRefGoogle Scholar
  13. 13.
    Bush MF, Campuzano ID, Robinson CV. Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal Chem. 2012;84(16):7124–30.CrossRefGoogle Scholar
  14. 14.
    Bysell H, Månsson R, Hansson P, Malmsten M. Microgels and microcapsules in peptide and protein drug delivery. Adv Drug Deliv Rev. 2011;63(13):1172–85.CrossRefGoogle Scholar
  15. 15.
    Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release. 2014;190:189–200.CrossRefGoogle Scholar
  16. 16.
    Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev. 2012;64(9):836–51.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chatterjee J, Laufer B, Kessler H. Synthesis of N-methylated cyclic peptides. Nat Protoc. 2012;7(3):432–44.CrossRefGoogle Scholar
  18. 18.
    Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2(4):215.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen G, editor. Characterization of protein therapeutics using mass spectrometry. London: Springer; 2014.Google Scholar
  20. 20.
    Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, Lee VM. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun. 2011;2:252.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Coin I. The depsipeptide method for solid-phase synthesis of difficult peptides. J Pept Sci. 2010;16(5):223–30.CrossRefGoogle Scholar
  22. 22.
    Copeland RA. Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. New York: Wiley; 2013.CrossRefGoogle Scholar
  23. 23.
    Coutts RT, Smail GA. Polysaccharides, peptides and proteins. London: William Heinemann; 2014.Google Scholar
  24. 24.
    Dhuria SV, Hanson LR, Frey WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.CrossRefGoogle Scholar
  25. 25.
    Dunn BM, editor. Peptide chemistry and drug design. New York: Wiley; 2015.Google Scholar
  26. 26.
    Duro-Castano A, Conejos-Sánchez I, Vicent MJ. Peptide-based polymer therapeutics. Polymers. 2014;6(2):515–51.CrossRefGoogle Scholar
  27. 27.
    Eiceman GA, Karpas Z, Hill HH Jr. Ion mobility spectrometry. London: CRC Press; 2013.CrossRefGoogle Scholar
  28. 28.
    Engwerda EE, Abbink EJ, Tack CJ, De Galan BE. Improved pharmacokinetic and pharmacodynamic profile of rapid-acting insulin using needle-free jet injection technology. Diabetes Care. 2011;34(8):1804–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Famulla S, Hövelmann U, Fischer A, Coester HV, Hermanski L, Kaltheuner M, Hirsch L. Insulin injection into lipohypertrophic tissue: blunted and more variable insulin absorption and action and impaired postprandial glucose control. Diabetes Care. 2016;39(9):1486–92.CrossRefGoogle Scholar
  30. 30.
    Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides. 2014;57:78–94.CrossRefGoogle Scholar
  31. 31.
    Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20(1):122–8.CrossRefGoogle Scholar
  32. 32.
    Gentile S, Strollo F, Ceriello A, AMD-OSDI Injection Technique Study Group. Lipodystrophy in insulin-treated subjects and other injection-site skin reactions: are we sure everything is clear? Diabetes Ther. 2016;7(3):401–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Goodwin D, Simerska P, Toth I. Peptides as therapeutics with enhanced bioactivity. Curr Med Chem. 2012;19(26):4451–61.CrossRefGoogle Scholar
  34. 34.
    Gupta H, Sharma A. Recent trends in protein and peptide drug delivery systems. Asian J Pharm. 2009;3(2):69–79.CrossRefGoogle Scholar
  35. 35.
    Illum L. Nasal drug delivery—recent developments and future prospects. J Control Release. 2012;161(2):254–63.CrossRefGoogle Scholar
  36. 36.
    International Organization for Standardization (ISO). Stainless steel needle tubing for the manufacture of medical devices. 9626 First Edition 1991-09-01, Amendment 1 2001-06-01. ISO 2001; ICS11.040.20, 1–5; 1991.Google Scholar
  37. 37.
    Iyire A, Alaayedi M, Mohammed AR. Pre-formulation and systematic evaluation of amino acid assisted permeability of insulin across in vitro buccal cell layers. Sci Rep. 2016;6:32498.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Johansson UB, Amsberg S, Hannerz L, Wredling R, Adamson U, Arnqvist HJ, Lins PE. Impaired absorption of insulin aspart from lipohypertrophic injection sites. Diabetes Care. 2005;28(8):2025–7.CrossRefGoogle Scholar
  39. 39.
    Johnston TP. Adsorption of recombinant human granulocyte colony stimulating factor (rhG-CSF) to polyvinyl chloride, polypropylene, and glass: effect of solvent additives. PDA J Pharm Sci Technol. 1996;50(4):238–45.PubMedGoogle Scholar
  40. 40.
    Kalluri H, Banga AK. Transdermal delivery of proteins. AAPS PharmSciTech. 2011;12(1):431–41.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH. Ion mobility–mass spectrometry. J Mass Spectrom. 2008;43(1):1–22.CrossRefGoogle Scholar
  42. 42.
    Kaspar AA, Reichert JM. Future directions for peptide therapeutics development. Drug Discov Today. 2013;18(17):807–17.CrossRefGoogle Scholar
  43. 43.
    Khovanova NA, Khovanov IA, Sbano L, Griffiths F, Holt TA. Characterisation of linear predictability and non-stationarity of subcutaneous glucose profiles. Comput Methods Prog Biomed. 2013;110(3):260–7.CrossRefGoogle Scholar
  44. 44.
    Kovalainen M, Mönkäre J, Riikonen J, Pesonen U, Vlasova M, Salonen J, Herzig KH. Novel delivery systems for improving the clinical use of peptides. Pharmacol Rev. 2015;67(3):541–61.CrossRefGoogle Scholar
  45. 45.
    Kreugel G, Keers JC, Kerstens MN, Wolffenbuttel BH. Randomized trial on the influence of the length of two insulin pen needles on glycemic control and patient preference in obese patients with diabetes. Diabetes Technol Ther. 2011;13(7):737–41.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Krzywon M, Abdel-Tawab M, van der Burg T, Fuhr U, Schubert-Zsilavecz M. Dosing accuracy of commonly used disposable insulin pens. Curr Med Res Opin. 2010;26(4):901–5.CrossRefGoogle Scholar
  47. 47.
    Kumar R, Palmieri MJ. Points to consider when establishing drug product specifications for parenteral microspheres. AAPS J. 2010;12(1):27–32.CrossRefGoogle Scholar
  48. 48.
    Lanucara F, Holman SW, Gray CJ, Eyers CE. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem. 2014;6(4):281–94.CrossRefGoogle Scholar
  49. 49.
    Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2017;26:2700. Scholar
  50. 50.
    Lax R, Meenan C. Challenges for therapeutic peptides. Part 2: Delivery systems. Innov Pharm Technol. 2017;43:42–6.Google Scholar
  51. 51.
    Lennard KR, Tavassoli A. Peptides come round: using SICLOPPS libraries for early stage drug discovery. Chem Eur J. 2014;20(34):10608–14.CrossRefGoogle Scholar
  52. 52.
    Li M. Organic chemistry of drug degradation. London: Royal Society of Chemistry; 2015.Google Scholar
  53. 53.
    Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK. Peptide vaccine: progress and challenges. Vaccine. 2014;2(3):515–36.CrossRefGoogle Scholar
  54. 54.
    Maggio E. Use of excipients to control aggregation in peptide and protein formulations. J Excip Food Chem. 2010;1(2):40–9.Google Scholar
  55. 55.
    Maher S, Brayden DJ. Overcoming poor permeability: translating permeation enhancers for oral peptide delivery. Drug Discov Today Technol. 2012;9(2):e113–9.CrossRefGoogle Scholar
  56. 56.
    Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30(11):592–9.CrossRefGoogle Scholar
  57. 57.
    McGonigle P. Peptide therapeutics for CNS indications. Biochem Pharmacol. 2012;83(5):559–66.CrossRefGoogle Scholar
  58. 58.
    Meraz-Ríos MA, León LD, Karla I, Campos-Peña V, Anda-Hernández D, Martha A, Mena-López R. Tau oligomers and aggregation in Alzheimer’s disease. J Neurochem. 2010;112(6):1353–67.CrossRefGoogle Scholar
  59. 59.
    Nail SL, Akers MJ, editors. Development and manufacture of protein pharmaceuticals, vol. 14. New York: Springer; 2012.Google Scholar
  60. 60.
    Naoi M, Yagi K. Incorporation of enzyme through blood-brain-barrier into the brain by means of liposomes. Biochem Int. 1980;1(6):591–6.Google Scholar
  61. 61.
    Nielsen EJB, Kamei N, Takeda-Morishita M. Safety of the cell-penetrating peptide penetratin as an oral absorption enhancer. Biol Pharm Bull. 2015;38(1):144–6.CrossRefGoogle Scholar
  62. 62.
    Niu Z, Conejos-Sánchez I, Griffin BT, O’Driscoll CM, Alonso MJ. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:337–54.CrossRefGoogle Scholar
  63. 63.
    Oramed Pharmaceuticals Inc. ORMD-0801-Oral Insulin Capsule; 2014. Available from: 1st January 2018.
  64. 64.
    Otvos L Jr, Wade JD. Current challenges in peptide-based drug discovery. Front Chem. 2014;2:1–10.Google Scholar
  65. 65.
    Patel A, Patel M, Yang X, K Mitra A. Recent advances in protein and peptide drug delivery: a special emphasis on polymeric nanoparticles. Protein Pept Lett. 2014;21(11):1102–20.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Pearlman R, Wang YJ, editors. Stability and characterization of protein and peptide drugs: case histories, vol. 5. London: Springer; 2013.Google Scholar
  67. 67.
    Pedersen SL, Tofteng AP, Malik L, Jensen KJ. Microwave heating in solid-phase peptide synthesis. Chem Soc Rev. 2012;41(5):1826–44.CrossRefGoogle Scholar
  68. 68.
    Pinholt C, Hartvig RA, Medicott NJ, Jorgensen L. The importance of interfaces in protein drug delivery—why is protein adsorption of interest in pharmaceutical formulations? Expert Opin Drug Deliv. 2011;8(7):949–64.CrossRefGoogle Scholar
  69. 69.
    Præstmark KA, Jensen ML, Madsen NB, Kildegaard J, Stallknecht BM. Pen needle design influences ease of insertion, pain, and skin trauma in subjects with type 2 diabetes. BMJ Open Diabetes Res Care. 2016;4(1):e000266.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rafferty J, Nagaraj H, P McCloskey A, Huwaitat R, Porter S, Albadr A, Laverty G. Peptide therapeutics and the pharmaceutical industry: barriers encountered translating from the laboratory to patients. Curr Med Chem. 2016;23(37):4231–59.CrossRefGoogle Scholar
  71. 71.
    Setty SG, Crasto W, Jarvis J, Khunti K, Davies MJ. New insulins and newer insulin regimens: a review of their role in improving glycaemic control in patients with diabetes. Postgrad Med J. 2016;92(1085):152–64.CrossRefGoogle Scholar
  72. 72.
    Sewald N, Jakubke HD. Peptides: chemistry and biology. New York: Wiley; 2015.Google Scholar
  73. 73.
    Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release. 2003;90(3):261–80.CrossRefGoogle Scholar
  74. 74.
    Stark G, editor. Biochemical aspects of reactions on solid supports. London: Elsevier; 2012.Google Scholar
  75. 75.
    Tan YN, Lee JY, Wang DI. Uncovering the design rules for peptide synthesis of metal nanoparticles. J Am Chem Soc. 2010;132(16):5677–86.CrossRefGoogle Scholar
  76. 76.
    Teng PN, Rungruang BJ, Hood BL, Sun M, Flint MS, Bateman NW, Conrads TP. Assessment of buffer systems for harvesting proteins from tissue interstitial fluid for proteomic analysis. J Proteome Res. 2010;9(8):4161–9.CrossRefGoogle Scholar
  77. 77.
    Thabit H, Hovorka R. Continuous subcutaneous insulin infusion therapy and multiple daily insulin injections in type 1 diabetes mellitus: a comparative overview and future horizons. Expert Opin Drug Deliv. 2016;13(3):389–400.CrossRefGoogle Scholar
  78. 78.
    Thwala LN, Préat V, Csaba NS. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opin Drug Deliv. 2017;14(1):23–36.CrossRefGoogle Scholar
  79. 79.
    Trimble AN, Bishop B, Rampe N. Medication errors associated with transition from insulin pens to insulin vials. Am J Health Syst Pharm. 2017;74(2):70–5.CrossRefGoogle Scholar
  80. 80.
    Tsomaia N. Peptide therapeutics: targeting the undruggable space. Eur J Med Chem. 2015;94:459–70.CrossRefGoogle Scholar
  81. 81.
    Turoverov KK, Kuznetsova IM, Uversky VN. The protein kingdom extended: ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. Prog Biophys Mol Biol. 2010;102(2):73–84.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, Verhaert P. The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom. 2014;4:58–69.CrossRefGoogle Scholar
  83. 83.
    Vaishya R, Khurana V, Patel S, Mitra AK. Long-term delivery of protein therapeutics. Expert Opin Drug Deliv. 2015;12(3):415–40.CrossRefGoogle Scholar
  84. 84.
    Van Dorpe S, Verbeken M, Wynendaele E, De Spiegeleer B. Purity profiling of peptide drugs. J Bioanal Biomed. 2011;S6:003. Scholar
  85. 85.
    Volkin DB, Sanyal G, Burke CJ, Middaugh CR. Preformulation studies as an essential guide to formulation development and manufacture of protein pharmaceuticals. In: Development and manufacture of protein pharmaceuticals. New York: Springer; 2002. p. 1–46.Google Scholar
  86. 86.
    Wang W, Nema S, Teagarden D. Protein aggregation—pathways and influencing factors. Int J Pharm. 2010;390(2):89–99.CrossRefGoogle Scholar
  87. 87.
    Wang G, editor. Antimicrobial peptides: discovery, design and novel therapeutic strategies. London: Cabi; 2017.Google Scholar
  88. 88.
    Zaman R, Othman I, Hoque Chowdhury E. Carrier mediated systemic delivery of protein and peptide therapeutics. Curr Pharm Des. 2016;22(40):6167–91.CrossRefGoogle Scholar
  89. 89.
    Zhang T, Peng Q, San FY, Luo JW, Wang MX, Wu WQ, Zhang ZR. A high-efficiency, low-toxicity, phospholipids-based phase separation gel for long-term delivery of peptides. Biomaterials. 2015;45:1–9.CrossRefGoogle Scholar
  90. 90.
    Zheng JS, Tang S, Guo Y, Chang HN, Liu L. Synthesis of cyclic peptides and cyclic proteins via ligation of peptide hydrazides. Chembiochem. 2012;13(4):542–6.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2020

Authors and Affiliations

  1. 1.ImmunocoreOxfordshireUK

Personalised recommendations