Chapter 1: Monoclonal Antibodies: Structure, Physicochemical Stability, and Protein Engineering

  • Brittney J. MillsEmail author
  • Ehab M. Moussa
  • Feroz Jameel
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 35)


Monoclonal antibodies (mAbs) are the largest class of therapeutic proteins. Owing to their versatile structure and function, mAbs are used for a wide range of therapeutic indications including oncology, immunology, neurology, metabolic, and cardiovascular diseases. Over the past three decades, more than 50 mAbs have been approved in the United States and Europe, and by 2020, about 70 mAb-based products are expected to be in the market (Ecker DM, Jones SD, Levine HL, MAbs 7:9–14, 2015). In 2017, 5 of the top 10 best-selling drugs in the global market are mAbs (Urquhart L, Nat Rev Drug Discov 17:232, 2018). In addition, several new therapeutic modalities based on mAbs including antibody-drug conjugates (ADCs), bispecific antibodies, and Fc fusion proteins have been approved or are in clinical trials.

mAbs are complex glycoproteins that pose several challenges for development into viable commercial drug products. In this chapter, the general structure of mAbs, the common routes of degradation, and advances in protein engineering to improve stability, pharmacokinetics, and efficacy of mAbs are discussed as it relates to drug product development. Other mAb-based modalities are discussed in detail in separate chapters of the book.


Structure of monoclonal antibodies Crystallizable fragment (Fc) Hinge region Antigen-binding fragment Aggregation Opalescence Oxidation Deamidation Stability 


  1. 1.
    Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs. 2015;7(1):9–14.CrossRefGoogle Scholar
  2. 2.
    Urquhart L. Top drugs and companies by sales in 2017. Nat Rev Drug Discov. 2018;17:232.CrossRefGoogle Scholar
  3. 3.
    Balakrishnan SM, Xie B, Moussa E, Iyer L, Chandrasekhar S, Panchal J, Topp EM. Structure of monoclonal antibodies. In: Biobetters: protein engineering to approach the curative. New York: Springer; 2015. p. 81–9.Google Scholar
  4. 4.
    Redpath S, Michaelsen TE, Sandlie I, Clark MR. The influence of the hinge region length in binding of human IgG to human Fcγ receptors. Hum Immunol. 1998;59(11):720–7.CrossRefGoogle Scholar
  5. 5.
    Smith MA, Easton M, Everett P, Lewis G, Payne M, Riveros-Moreno V, Allen G. Specific cleavage of immunoglobulin G by copper ions. Int J Pept Protein Res. 1996;48(1):48–55.CrossRefGoogle Scholar
  6. 6.
    Wang X, Kumar S, Singh SK. Disulfide scrambling in IgG2 monoclonal antibodies: insights from molecular dynamics simulations. Pharm Res. 2011;28(12):3128–44.CrossRefGoogle Scholar
  7. 7.
    Sondermann P, Huber R, Oosthuizen V, Jacob U. The 3.2-Å crystal structure of the human IgG1 Fc fragment–FcγRIII complex. Nature. 2000;406:267.CrossRefGoogle Scholar
  8. 8.
    Segal DM, Padlan EA, Cohen GH, Rudikoff S, Potter M, Davies DR. The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. Proc Natl Acad Sci U S A. 1974;71(11):4298–302.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Huang L, Lu J, Wroblewski V, Beals J, M Riggin R. In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal Chem. 2005;77:1432–9.CrossRefGoogle Scholar
  10. 10.
    Tachibana H, Seki K, Murakami H. Identification of hybrid-type carbohydrate chains on the light chain of human monoclonal antibody specific to lung adenocarcinoma. Biochim Biophys Acta. 1993;1182(3):257–63.CrossRefGoogle Scholar
  11. 11.
    Wallick SC, Kabat EA, Morrison SL. Glycosylation of a VH residue of a monoclonal antibody against alpha (1----6) dextran increases its affinity for antigen. J Exp Med. 1988;168(3):1099–109.CrossRefGoogle Scholar
  12. 12.
    Khurana S, Raghunathan V, Salunke DM. The variable domain glycosylation in a monoclonal antibody specific to GnRH modulates antigen binding. Biochem Biophys Res Commun. 1997;234(2):465–9.CrossRefGoogle Scholar
  13. 13.
    De Simone A, Dhulesia A, Soldi G, Vendruscolo M, Hsu S-TD, Chiti F, Dobson CM. Experimental free energy surfaces reveal the mechanisms of maintenance of protein solubility. Proc Natl Acad Sci. 2011;108(52):21057–62.CrossRefGoogle Scholar
  14. 14.
    Chiti F, Dobson CM. Amyloid formation by globular proteins under native conditions. Nat Chem Biol. 2008;5:15.CrossRefGoogle Scholar
  15. 15.
    Vermeer AW, Norde W. The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J. 2000;78(1):394–404.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li W, Prabakaran P, Chen W, Zhu Z, Feng Y, Dimitrov DS. Antibody aggregation: insights from sequence and structure. Antibodies. 2016;5(3):19.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Roberts CJ. Non-native protein aggregation kinetics. Biotechnol Bioeng. 2007;98(5):927–38.CrossRefGoogle Scholar
  18. 18.
    Russel WB, Saville DA, Schowalter WR. Colloidal dispersions. Cambridge: Cambridge University Press; 1989.CrossRefGoogle Scholar
  19. 19.
    Geng SB, Cheung JK, Narasimhan C, Shameem M, Tessier PM. Improving monoclonal antibody selection and engineering using measurements of colloidal protein interactions. J Pharm Sci. 2014;103(11):3356–63.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Weiss WF, Young TM, Roberts CJ. Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm Sci. 2009;98(4):1246–77.CrossRefGoogle Scholar
  21. 21.
    Telikepalli SN, Kumru OS, Kalonia C, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci. 2014;103(3):796–809.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dobson CM. The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond Ser B Biol Sci. 2001;356(1406):133–45.CrossRefGoogle Scholar
  23. 23.
    Tischenko VM, Abramov VM, Zav’yalov VP. Investigation of the cooperative structure of Fc fragments from myeloma immunoglobulin G. Biochemistry. 1998;37(16):5576–81.CrossRefGoogle Scholar
  24. 24.
    Fast JL, Cordes AA, Carpenter JF, Randolph TW. Physical instability of a therapeutic Fc fusion protein: domain contributions to conformational and colloidal stability. Biochemistry. 2009;48(49):11724–36.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wu H, Kroe-Barrett R, Singh S, Robinson AS, Roberts CJ. Competing aggregation pathways for monoclonal antibodies. FEBS Lett. 2014;588(6):936–41.CrossRefGoogle Scholar
  26. 26.
    Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.CrossRefGoogle Scholar
  27. 27.
    Sahin E, Grillo AO, Perkins MD, Roberts CJ. Comparative effects of pH and ionic strength on protein–protein interactions, unfolding, and aggregation for IgG1 antibodies. J Pharm Sci. 2010;99(12):4830–48.CrossRefGoogle Scholar
  28. 28.
    Arosio P, Rima S, Morbidelli M. Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: from oligomers to larger aggregates. Pharm Res. 2013;30(3):641–54.CrossRefGoogle Scholar
  29. 29.
    Ionescu RM, Vlasak J, Price C, Kirchmeier M. Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. J Pharm Sci. 2008;97(4):1414–26.CrossRefGoogle Scholar
  30. 30.
    Nicoud L, Jagielski J, Pfister D, Lazzari S, Massant J, Lattuada M, Morbidelli M. Kinetics of monoclonal antibody aggregation from dilute toward concentrated conditions. J Phys Chem B. 2016;120(13):3267–80.CrossRefGoogle Scholar
  31. 31.
    Alsaddique JA, Ritesh MP, Zebunnissa R. Effect of thermal and shear stressors on the physical properties, structural integrity and biological activity of the anti-TNF-alpha monoclonal antibody, infliximab. Curr Pharm Biotechnol. 2016;17(10):905–14.CrossRefGoogle Scholar
  32. 32.
    Kalonia C, Toprani V, Toth R, Wahome N, Gabel I, Middaugh CR, Volkin DB. Effects of protein conformation, apparent solubility, and protein–protein interactions on the rates and mechanisms of aggregation for an IgG1Monoclonal antibody. J Phys Chem B. 2016;120(29):7062–75.CrossRefGoogle Scholar
  33. 33.
    Lahlou A, Blanchet B, Carvalho M, Paul M, Astier A. Mechanically-induced aggregation of the monoclonal antibody cetuximab. Ann Pharm Fr. 2009;67(5):340–52.CrossRefGoogle Scholar
  34. 34.
    Cromwell MEM, Hilario E, Jacobson F. Protein aggregation and bioprocessing. AAPS J. 2006;8(3):E572–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vázquez-Rey M, Lang DA. Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng. 2011;108(7):1494–508.CrossRefGoogle Scholar
  36. 36.
    Maulik VT, Jennifer SL, Teruna JS. The role of thiols and disulfides on protein stability. Curr Protein Pept Sci. 2009;10(6):614–25.CrossRefGoogle Scholar
  37. 37.
    Elgundi Z, Reslan M, Cruz E, Sifniotis V, Kayser V. The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev. 2017;122:2–19.CrossRefGoogle Scholar
  38. 38.
    Nishi H, Miyajima M, Wakiyama N, Kubota K, Hasegawa J, Uchiyama S, Fukui K. Fc domain mediated self-association of an IgG1 monoclonal antibody under a low ionic strength condition. J Biosci Bioeng. 2011;112(4):326–32.CrossRefGoogle Scholar
  39. 39.
    Nezlin R. Interactions between immunoglobulin G molecules. Immunol Lett. 2010;132(1):1–5.CrossRefGoogle Scholar
  40. 40.
    Wu S-J, Luo J, O’Neil KT, Kang J, Lacy ER, Canziani G, Baker A, Huang M, Tang QM, Raju TS, Jacobs SA, Teplyakov A, Gilliland GL, Feng Y. Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng Des Sel. 2010;23(8):643–51.CrossRefGoogle Scholar
  41. 41.
    Wang X, Das TK, Singh SK, Kumar S. Potential aggregation prone regions in biotherapeutics: a survey of commercial monoclonal antibodies. MAbs. 2009;1(3):254–67.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kanai S, Liu J, Patapoff TW, Shire SJ. Reversible self-Association of a Concentrated Monoclonal Antibody Solution Mediated by Fab–Fab interaction that impacts solution viscosity. J Pharm Sci. 2008;97(10):4219–27.CrossRefGoogle Scholar
  43. 43.
    Chi EY, Krishnan S, Kendrick BS, Chang BS, Carpenter JF, Randolph TW. Roles of conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony-stimulating factor. Protein Sci. 2003;12(5):903–13.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Saluja A, Fesinmeyer RM, Hogan S, Brems DN, Gokarn YR. Diffusion and sedimentation interaction parameters for measuring the second Virial coefficient and their utility as predictors of protein aggregation. Biophys J. 2010;99(8):2657–65.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Blanco MA, Perevozchikova T, Martorana V, Manno M, Roberts CJ. Protein–protein interactions in dilute to concentrated solutions: α-Chymotrypsinogen in acidic conditions. J Phys Chem B. 2014;118(22):5817–31.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kuznetsova IM, Zaslavsky BY, Breydo L, Turoverov KK, Uversky VN. Beyond the excluded volume effects: mechanistic complexity of the crowded milieu. Molecules. 2015;20(1):1377.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Daugherty AL, Mrsny RJ. Formulation and delivery issues for monoclonal antibody therapeutics. Adv Drug Deliv Rev. 2006;58(5):686–706.CrossRefGoogle Scholar
  48. 48.
    Ritesh MP, Benedict R, Wazir A, Zebunnissa R. Physical and structural stability of the monoclonal antibody, Trastuzumab (Herceptin®), intravenous solutions. Curr Pharm Biotechnol. 2013;14(2):220–5.Google Scholar
  49. 49.
    Pabari RM, Ryan B, McCarthy C, Ramtoola Z. Effect of microencapsulation shear stress on the structural integrity and biological activity of a model monoclonal antibody, Trastuzumab. Pharmaceutics. 2011;3(3):510.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mahler H-C, Müller R, Frieβ W, Delille A, Matheus S. Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur J Pharm Biopharm. 2005;59(3):407–17.CrossRefGoogle Scholar
  51. 51.
    Mahler H-C, Senner F, Maeder K, Mueller R. Surface activity of a monoclonal antibody. J Pharm Sci. 2009;98(12):4525–33.CrossRefGoogle Scholar
  52. 52.
    Gopal ESR. Critical Opalescence. Resonance. 2000;5(4):37–45.CrossRefGoogle Scholar
  53. 53.
    Council of Europe. In 2.2.1 clarity and degree of opalescence of liquids. In: European Pharmacopoeia, vol. 2004. 5th ed. General Notices Volume. p. 23–4.Google Scholar
  54. 54.
    Yang T-C, Langford AJ, Kumar S, Ruesch JC, Wang W. Trimerization dictates solution opalescence of a monoclonal antibody. J Pharm Sci. 2016;105(8):2328–37.CrossRefGoogle Scholar
  55. 55.
    Sukumar M, Doyle BL, Combs JL, Pekar AH. Opalescent appearance of an IgG1 antibody at high concentrations and its relationship to noncovalent association. Pharm Res. 2004;21(7):1087–93.CrossRefGoogle Scholar
  56. 56.
    Salinas BA, Sathish HA, Bishop SM, Harn N, Carpenter JF, Randolph TW. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation. J Pharm Sci. 2010;99(1):82–93.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wang NHB, Ionescu R, Mach H, Sweeney J, Hamm C, Kirchmeier MJ, Meyer BK. Opalescence of an IgG1 monoclonal antibody formulation is mediated by ionic strength and excipients. BioPharm Int. 2009;22(4):36–47.Google Scholar
  58. 58.
    Woods JM, Nesta D. Formulation effects on opalescence of a high-concentration MAb. BioProcess Int. 2010:8.Google Scholar
  59. 59.
    Raut AS, Kalonia DS. Pharmaceutical perspective on opalescence and liquid–liquid phase separation in protein solutions. Mol Pharm. 2016;13(5):1431–44.CrossRefGoogle Scholar
  60. 60.
    Mason BD, Zhang L, Remmele RL, Zhang J. Opalescence of an IgG2 monoclonal antibody solution as it relates to liquid–liquid phase separation. J Pharm Sci. 2011;100(11):4587–96.CrossRefGoogle Scholar
  61. 61.
    Vekilov PG. Phase diagrams and kinetics of phase transitions in protein solutions. J Phys Condens Matter. 2012;24(19):193101.CrossRefGoogle Scholar
  62. 62.
    Johnson HR, Lenhoff AM. Characterization and suitability of therapeutic antibody dense phases for subcutaneous delivery. Mol Pharm. 2013;10(10):3582–91.CrossRefGoogle Scholar
  63. 63.
    Wang Y, Lomakin A, Latypov RF, Benedek GB. Phase separation in solutions of monoclonal antibodies and the effect of human serum albumin. Proc Natl Acad Sci. 2011;108(40):16606–11.CrossRefGoogle Scholar
  64. 64.
    Taratuta VG, Holschbach A, Thurston GM, Blankschtein D, Benedek GB. Liquid-liquid phase separation of aqueous lysozyme solutions: effects of pH and salt identity. J Phys Chem. 1990;94(5):2140–4.CrossRefGoogle Scholar
  65. 65.
    Broide ML, Berland CR, Pande J, Ogun OO, Benedek GB. Binary-liquid phase separation of lens protein solutions. Proc Natl Acad Sci U S A. 1991;88(13):5660–4.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Oki S, Nishinami S, Shiraki K. Arginine suppresses opalescence and liquid–liquid phase separation in IgG solutions. Int J Biol Macromol. 2018;118:1708–12.CrossRefGoogle Scholar
  67. 67.
    Raut AS, Kalonia DS. Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions. J Pharm Sci. 2015;104(4):1263–74.CrossRefGoogle Scholar
  68. 68.
    Nishi H, Miyajima M, Nakagami H, Noda M, Uchiyama S, Fukui K. Phase separation of an IgG1 antibody solution under a low ionic strength condition. Pharm Res. 2010;27(7):1348–60.CrossRefGoogle Scholar
  69. 69.
    Liu J, Nguyen MDH, Andya JD, Shire SJ. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci. 2005;94(9):1928–40.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Bethea D, Wu S-J, Luo J, Hyun L, Lacy ER, Teplyakov A, Jacobs SA, O’Neil KT, Gilliland GL, Feng Y. Mechanisms of self-association of a human monoclonal antibody CNTO607. Protein Eng Des Sel. 2012;25(10):531–8.CrossRefGoogle Scholar
  71. 71.
    Arora J, Hu Y, Esfandiary R, Sathish HA, Bishop SM, Joshi SB, Middaugh CR, Volkin DB, Weis DD. Charge-mediated Fab-Fc interactions in an IgG1 antibody induce reversible self-association, cluster formation, and elevated viscosity. MAbs. 2016;8(8):1561–74.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Esfandiary R, Parupudi A, Casas-Finet J, Gadre D, Sathish H. Mechanism of reversible self-Association of a Monoclonal Antibody: role of electrostatic and hydrophobic interactions. J Pharm Sci. 2015;104(2):577–86.CrossRefGoogle Scholar
  73. 73.
    Yadav S, Sreedhara A, Kanai S, Liu J, Lien S, Lowman H, Kalonia DS, Shire SJ. Establishing a link between amino acid sequences and self-associating and viscoelastic behavior of two closely related monoclonal antibodies. Pharm Res. 2011;28(7):1750–64.CrossRefGoogle Scholar
  74. 74.
    Arora J, Hickey JM, Majumdar R, Esfandiary R, Bishop SM, Samra HS, Middaugh CR, Weis DD, Volkin DB. Hydrogen exchange mass spectrometry reveals protein interfaces and distant dynamic coupling effects during the reversible self-association of an IgG1 monoclonal antibody. MAbs. 2015;7(3):525–39.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yadav S, Liu J, Shire SJ, Kalonia DS. Specific interactions in high concentration antibody solutions resulting in high viscosity. J Pharm Sci. 2010;99(3):1152–68.CrossRefGoogle Scholar
  76. 76.
    Broide ML, Tominc TM, Saxowsky MD. Using phase transitions to investigate the effect of salts on protein interactions. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996;53(6):6325–35.PubMedGoogle Scholar
  77. 77.
    Mason BD, Zhang-van Enk J, Zhang L, Remmele RL Jr, Zhang J. Liquid-liquid phase separation of a monoclonal antibody and nonmonotonic influence of Hofmeister anions. Biophys J. 2010;99(11):3792–800.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Grigsby JJ, Blanch HW, Prausnitz JM. Cloud-point temperatures for lysozyme in electrolyte solutions: effect of salt type, salt concentration and pH. Biophys Chem. 2001;91(3):231–43.CrossRefGoogle Scholar
  79. 79.
    Zhang Y, Cremer PS. The inverse and direct Hofmeister series for lysozyme. Proc Natl Acad Sci. 2009;106(36):15249–53.CrossRefGoogle Scholar
  80. 80.
    Dumetz AC, Chockla AM, Kaler EW, Lenhoff AM. Effects of pH on protein–protein interactions and implications for protein phase behavior. Biochim Biophys Acta. 2008;1784(4):600–10.CrossRefGoogle Scholar
  81. 81.
    Shiraki K, Kudou M, Fujiwara S, Imanaka T, Takagi M. Biophysical effect of amino acids on the prevention of protein aggregation. J Biochem. 2002;132(4):591–5.CrossRefGoogle Scholar
  82. 82.
    Flocco MM, Mowbray SL. Planar stacking interactions of arginine and aromatic side-chains in proteins. J Mol Biol. 1994;235(2):709–17.CrossRefGoogle Scholar
  83. 83.
    Kohei T, Daisuke E, Yoshiko K, Tsutomu A. Review: why is arginine effective in suppressing aggregation? Protein Pept Lett. 2005;12(7):613–9.CrossRefGoogle Scholar
  84. 84.
    Shiraki K, Kudou M, Nishikori S, Kitagawa H, Imanaka T, Takagi M. Arginine ethylester prevents thermal inactivation and aggregation of lysozyme. Eur J Biochem. 2004;271(15):3242–7.CrossRefGoogle Scholar
  85. 85.
    Bessa J, Boeckle S, Beck H, Buckel T, Schlicht S, Ebeling M, Kiialainen A, Koulov A, Boll B, Weiser T, Singer T, Rolink AG, Iglesias A. The immunogenicity of antibody aggregates in a novel transgenic mouse model. Pharm Res. 2015;32(7):2344–59.CrossRefGoogle Scholar
  86. 86.
    Jiskoot W, Kijanka G, Randolph TW, Carpenter JF, Koulov AV, Mahler H-C, Joubert MK, Jawa V, Narhi LO. Mouse models for assessing protein immunogenicity: lessons and challenges. J Pharm Sci. 2016;105(5):1567–75.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Torosantucci R, Sharov VS, van Beers M, Brinks V, Schöneich C, Jiskoot W. Identification of oxidation sites and covalent cross-links in metal catalyzed oxidized interferon Beta-1a: potential implications for protein aggregation and immunogenicity. Mol Pharm. 2013;10(6):2311–22.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    van Beers MMC, Sauerborn M, Gilli F, Brinks V, Schellekens H, Jiskoot W. Oxidized and aggregated recombinant human interferon Beta is immunogenic in human interferon Beta transgenic mice. Pharm Res. 2011;28(10):2393.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Fradkin AH, Mozziconacci O, Schöneich C, Carpenter JF, Randolph TW. UV photodegradation of murine growth hormone: chemical analysis and immunogenicity consequences. Eur J Pharm Biopharm. 2014;87(2):395–402.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Schöneich C. Novel chemical degradation pathways of proteins mediated by tryptophan oxidation: tryptophan side chain fragmentation. J Pharm Pharmacol. 2018;70(5):655–65.CrossRefGoogle Scholar
  91. 91.
    Sydow JF, Lipsmeier F, Larraillet V, Hilger M, Mautz B, Mølhøj M, Kuentzer J, Klostermann S, Schoch J, Voelger HR, Regula JT, Cramer P, Papadimitriou A, Kettenberger H. Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. PLoS One. 2014;9(6):e100736.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Geiger T, Clarke S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem. 1987;262(2):785–94.PubMedGoogle Scholar
  93. 93.
    Potter SM, Henzel WJ, Aswad DW. In vitro aging of calmodulin generates isoaspartate at multiple Asn-Gly and Asp-Gly sites in calcium-binding domains II, III and IV. Protein Sci. 1993;2(10):1648–63.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Stephenson RC, Clarke S. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem. 1989;264(11):6164–70.PubMedGoogle Scholar
  95. 95.
    Brennan TV, Clarke S. Effect of adjacent histidine and cysteine residues on the spontaneous degradation of asparaginyl- and aspartyl-containing peptides. Int J Pept Protein Res. 1995;45(6):547–53.CrossRefGoogle Scholar
  96. 96.
    Aswad DW, Paranandi MV, Schurter BT. Isoaspartate in peptides and proteins: formation, significance, and analysis. J Pharm Biomed Anal. 2000;21(6):1129–36.CrossRefGoogle Scholar
  97. 97.
    Oliyai CB, Borchardt RT. Chemical pathways of peptide degradation. VI. Effect of the primary sequence on the pathways of degradation of Aspartyl residues in model Hexapeptides. Pharm Res. 1994;11(5):751–8.CrossRefGoogle Scholar
  98. 98.
    Zhang YT, Hu J, Pace AL, Wong R, Wang YJ, Kao Y-H. Characterization of asparagine 330 deamidation in an Fc-fragment of IgG1 using cation exchange chromatography and peptide mapping. J Chromatogr B. 2014;965:65–71.CrossRefGoogle Scholar
  99. 99.
    Pace AL, Wong RL, Zhang YT, Kao Y-H, Wang YJ. Asparagine Deamidation dependence on buffer type, pH, and temperature. J Pharm Sci. 2013;102(6):1712–23.CrossRefGoogle Scholar
  100. 100.
    Yan Y, Wei H, Fu Y, Jusuf S, Zeng M, Ludwig R, Krystek SR, Chen G, Tao L, Das TK. Isomerization and oxidation in the complementarity-determining regions of a monoclonal antibody: a study of the modification–structure–function correlations by hydrogen–deuterium exchange mass spectrometry. Anal Chem. 2016;88(4):2041–50.CrossRefGoogle Scholar
  101. 101.
    Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, Shire SJ, Bjork N, Totpal K, Chen AB. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl. 2001;752(2):233–45.CrossRefGoogle Scholar
  102. 102.
    Yi L, Beckley N, Gikanga B, Zhang J, Wang YJ, Chih H-W, Sharma VK. Isomerization of Asp–Asp motif in model peptides and a monoclonal antibody Fab fragment. J Pharm Sci. 2013;102(3):947–59.CrossRefGoogle Scholar
  103. 103.
    Timm V, Gruber P, Wasiliu M, Lindhofer H, Chelius D. Identification and characterization of oxidation and deamidation sites in monoclonal rat/mouse hybrid antibodies. J Chromatogr B. 2010;878(9):777–84.CrossRefGoogle Scholar
  104. 104.
    Chu GC, Chelius D, Xiao G, Khor HK, Coulibaly S, Bondarenko PV. Accumulation of Succinimide in a recombinant monoclonal antibody in mildly acidic buffers under elevated temperatures. Pharm Res. 2007;24(6):1145–56.CrossRefGoogle Scholar
  105. 105.
    Cacia J, Keck R, Presta LG, Frenz J. Isomerization of an aspartic acid residue in the complementarity-determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity. Biochemistry. 1996;35(6):1897–903.CrossRefGoogle Scholar
  106. 106.
    Rehder DS, Chelius D, McAuley A, Dillon TM, Xiao G, Crouse-Zeineddini J, Vardanyan L, Perico N, Mukku V, Brems DN, Matsumura M, Bondarenko PV. Isomerization of a single aspartyl residue of anti-epidermal growth factor receptor immunoglobulin gamma2 antibody highlights the role avidity plays in antibody activity. Biochemistry. 2008;47(8):2518–30.CrossRefGoogle Scholar
  107. 107.
    Yan B, Steen S, Hambly D, Valliere-Douglass J, Bos TV, Smallwood S, Yates Z, Arroll T, Han Y, Gadgil H, Latypov RF, Wallace A, Lim A, Kleemann GR, Wang W, Balland A. Succinimide formation at Asn 55 in the complementarity determining region of a recombinant monoclonal antibody IgG1 heavy chain. J Pharm Sci. 2009;98(10):3509–21.CrossRefGoogle Scholar
  108. 108.
    Dick LW, Qiu D, Wong RB, Cheng K-C. Isomerization in the CDR2 of a monoclonal antibody: binding analysis and factors that influence the isomerization rate. Biotechnol Bioeng. 2010;105(3):515–23.CrossRefGoogle Scholar
  109. 109.
    Wakankar AA, Liu J u n, VanderVelde D, Wang YJ, Shire SJ, Borchardt RT. The effect of cosolutes on the isomerization of aspartic acid residues and conformational stability in a monoclonal antibody. J Pharm Sci. 2007;96(7):1708–18.CrossRefGoogle Scholar
  110. 110.
    Wakankar AA, Borchardt RT, Eigenbrot C, Shia S, Wang YJ, Shire SJ, Liu JL. Aspartate isomerization in the complementarity-determining regions of two closely related monoclonal antibodies. Biochemistry. 2007;46(6):1534–44.CrossRefGoogle Scholar
  111. 111.
    Noguchi S. Structural changes induced by the deamidation and isomerization of asparagine revealed by the crystal structure of Ustilago sphaerogena ribonuclease U2B. Biopolymers. 2010;93(11):1003–10.CrossRefGoogle Scholar
  112. 112.
    Torosantucci R, Schöneich C, Jiskoot W. Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm Res. 2014;31(3):541–53.CrossRefGoogle Scholar
  113. 113.
    Wang W, Singh S, Zeng DL, King K, Nema S. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96(1):1–26.CrossRefGoogle Scholar
  114. 114.
    Shechter Y, Burstein Y, Patchornik A. Selective oxidation of methionine residues in proteins. Biochemistry. 1975;14(20):4497–503.CrossRefGoogle Scholar
  115. 115.
    Shechter Y. Selective oxidation and reduction of methionine residues in peptides and proteins by oxygen exchange between sulfoxide and sulfide. J Biol Chem. 1986;261(1):66–70.PubMedGoogle Scholar
  116. 116.
    Bertolotti-Ciarlet A, Wang W, Lownes R, Pristatsky P, Fang Y, McKelvey T, Li Y, Li Y, Drummond J, Prueksaritanont T, Vlasak J. Impact of methionine oxidation on the binding of human IgG1 to Fc Rn and Fc gamma receptors. Mol Immunol. 2009;46(8–9):1878–82.CrossRefGoogle Scholar
  117. 117.
    Wang W, Vlasak J, Li Y, Pristatsky P, Fang Y, Pittman T, Roman J, Wang Y, Prueksaritanont T, Ionescu R. Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunol. 2011;48(6–7):860–6.CrossRefGoogle Scholar
  118. 118.
    Pan H, Chen K, Chu L, Kinderman F, Apostol I, Huang G. Methionine oxidation in human IgG2 Fc decreases binding affinities to protein a and FcRn. Protein Sci. 2009;18(2):424–33.CrossRefGoogle Scholar
  119. 119.
    Zhang A, Hu P, MacGregor P, Xue Y, Fan H, Suchecki P, Olszewski L, Liu A. Understanding the conformational impact of chemical modifications on monoclonal antibodies with diverse sequence variation using hydrogen/deuterium exchange mass spectrometry and structural modeling. Anal Chem. 2014;86(7):3468–75.CrossRefGoogle Scholar
  120. 120.
    Burkitt W, Domann P, O’Connor G. Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry. Protein Sci. 2010;19(4):826–35.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Depreter F, Pilcer G, Amighi K. Inhaled proteins: challenges and perspectives. Int J Pharm. 2013;447(1):251–80.CrossRefGoogle Scholar
  122. 122.
    Sreedhara A, Yin J, Joyce M, Lau K, Wecksler AT, Deperalta G, Yi L, John Wang Y, Kabakoff B, Kishore RSK. Effect of ambient light on IgG1 monoclonal antibodies during drug product processing and development. Eur J Pharm Biopharm. 2016;100:38–46.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Sreedhara A, Lau K, Li C, Hosken B, Macchi F, Zhan D, Shen A, Steinmann D, Schöneich C, Lentz Y. Role of surface exposed tryptophan as substrate generators for the antibody catalyzed water oxidation pathway. Mol Pharm. 2013;10(1):278–88.CrossRefGoogle Scholar
  124. 124.
    Houde D, Peng Y, Berkowitz SA, Engen JR. Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics. 2010;9(8):1716–28.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Liu D, Ren D, Huang H, Dankberg J, Rosenfeld R, Cocco MJ, Li L, Brems DN, Remmele RL. Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Biochemistry. 2008;47(18):5088–100.CrossRefGoogle Scholar
  126. 126.
    Stracke J, Emrich T, Rueger P, Schlothauer T, Kling L, Knaupp A, Hertenberger H, Wolfert A, Spick C, Lau W, Drabner G, Reiff U, Koll H, Papadimitriou A. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies. MAbs. 2014;6(5):1229–42.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Mo J, Yan Q, So CK, Soden T, Lewis MJ, Hu P. Understanding the impact of methionine oxidation on the biological functions of IgG1 antibodies using hydrogen/deuterium exchange mass spectrometry. Anal Chem. 2016;88(19):9495–502.CrossRefGoogle Scholar
  128. 128.
    Dashivets T, Stracke J, Dengl S, Knaupp A, Pollmann J, Buchner J, Schlothauer T. Oxidation in the complementarity-determining regions differentially influences the properties of therapeutic antibodies. MAbs. 2016;8(8):1525–35.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Wei Z, Feng J, Lin H-Y, Mullapudi S, Bishop E, Tous GI, Casas-Finet J, Hakki F, Strouse R, Schenerman MA. Identification of a single tryptophan residue as critical for binding activity in a humanized monoclonal antibody against respiratory syncytial virus. Anal Chem. 2007;79(7):2797–805.CrossRefGoogle Scholar
  130. 130.
    Rehder DS, Dillon TM, Pipes GD, Bondarenko PV. Reversed-phase liquid chromatography/mass spectrometry analysis of reduced monoclonal antibodies in pharmaceutics. J Chromatogr A. 2006;1102(1):164–75.CrossRefGoogle Scholar
  131. 131.
    Dick LW Jr, Kim C, Qiu D, Cheng K-C. Determination of the origin of the N-terminal pyro-glutamate variation in monoclonal antibodies using model peptides. Biotechnol Bioeng. 2007;97(3):544–53.CrossRefGoogle Scholar
  132. 132.
    Yan B, Valliere-Douglass J, Brady L, Steen S, Han M, Pace D, Elliott S, Yates Z, Han Y, Balland A, Wang W, Pettit D. Analysis of post-translational modifications in recombinant monoclonal antibody IgG1 by reversed-phase liquid chromatography/mass spectrometry. J Chromatogr A. 2007;1164(1):153–61.CrossRefGoogle Scholar
  133. 133.
    Meert CD, Brady LJ, Guo A, Balland A. Characterization of antibody charge heterogeneity resolved by preparative immobilized pH gradients. Anal Chem. 2010;82(9):3510–8.CrossRefGoogle Scholar
  134. 134.
    Yu L, Vizel A, Huff MB, Young M, Remmele RL, He B. Investigation of N-terminal glutamate cyclization of recombinant monoclonal antibody in formulation development. J Pharm Biomed Anal. 2006;42(4):455–63.CrossRefGoogle Scholar
  135. 135.
    Lyubarskaya Y, Houde D, Woodard J, Murphy D, Mhatre R. Analysis of recombinant monoclonal antibody isoforms by electrospray ionization mass spectrometry as a strategy for streamlining characterization of recombinant monoclonal antibody charge heterogeneity. Anal Biochem. 2006;348(1):24–39.CrossRefGoogle Scholar
  136. 136.
    Liu YD, Goetze AM, Bass RB, Flynn GC. N-terminal glutamate to pyroglutamate conversion in vivo for human IgG2 antibodies. J Biol Chem. 2011;286(13):11211–7.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Liu H, Gaza-Bulseco G, Sun J. Characterization of the stability of a fully human monoclonal IgG after prolonged incubation at elevated temperature. J Chromatogr B. 2006;837(1):35–43.CrossRefGoogle Scholar
  138. 138.
    Vlasak J, Ionescu R. Fragmentation of monoclonal antibodies. MAbs. 2011;3(3):253–63.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Kimball JA, Norman DJ, Shield CF, Schroeder TJ, Lisi P, Garovoy M, O’Connell JB, Stuart F, McDiarmid SV, Wall W. OKT3 antibody response study (OARS): a multicenter comparative study. Transplant Proc. 1993;25(1 Pt 1):558–60.PubMedGoogle Scholar
  140. 140.
    Almagro JC, Daniels-Wells TR, Perez-Tapia SM, Penichet ML. Progress and challenges in the design and clinical development of antibodies for cancer therapy. Front Immunol. 2018;8:1751.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Gong R, Vu BK, Feng Y, Prieto DA, Dyba MA, Walsh JD, Prabakaran P, Veenstra TD, Tarasov SG, Ishima R, Dimitrov DS. Engineered human antibody constant domains with increased stability. J Biol Chem. 2009;284(21):14203–10.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Ying T, Chen W, Feng Y, Wang Y, Gong R, Dimitrov DS. Engineered soluble monomeric IgG1 CH3 domain: generation, mechanisms of function, and implications for design of biological therapeutics. J Biol Chem. 2013;288(35):25154–64.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Buchanan A, Clementel V, Woods R, Harn N, Bowen MA, Mo W, Popovic B, Bishop SM, Dall’Acqua W, Minter R, Jermutus L, Bedian V. Engineering a therapeutic IgG molecule to address cysteinylation, aggregation and enhance thermal stability and expression. MAbs. 2013;5(2):255–62.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL. Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci. 2009;106(29):11937–42.CrossRefGoogle Scholar
  145. 145.
    Chennamsetty N, Helk B, Voynov V, Kayser V, Trout BL. Aggregation-prone motifs in human immunoglobulin G. J Mol Biol. 2009;391(2):404–13.CrossRefGoogle Scholar
  146. 146.
    Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL. Prediction of aggregation prone regions of therapeutic proteins. J Phys Chem B. 2010;114(19):6614–24.CrossRefGoogle Scholar
  147. 147.
    Courtois F, Schneider CP, Agrawal NJ, Trout BL. Rational design of biobetters with enhanced stability. J Pharm Sci. 2015;104(8):2433–40.CrossRefGoogle Scholar
  148. 148.
    Dudgeon K, Rouet R, Kokmeijer I, Schofield P, Stolp J, Langley D, Stock D, Christ D. General strategy for the generation of human antibody variable domains with increased aggregation resistance. Proc Natl Acad Sci U S A. 2012;109(27):10879–84.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Kayser V, Chennamsetty N, Voynov V, Forrer K, Helk B, Trout BL. Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies. Biotechnol J. 2011;6(1):38–44.CrossRefGoogle Scholar
  150. 150.
    Voynov V, Chennamsetty N, Kayser V, Helk B, Forrer K, Zhang H, Fritsch C, Heine H, Trout BL. Dynamic fluctuations of protein-carbohydrate interactions promote protein aggregation. PLoS One. 2009;4(12):e8425.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Van Der Kolk LE, Grillo-López AJ, Baars JW, Hack CE, Van Oers MHJ. Complement activation plays a key role in the side-effects of rituximab treatment. Br J Haematol. 2001;115(4):807–11.CrossRefGoogle Scholar
  152. 152.
    Wang S-Y, Racila E, Taylor RP, Weiner GJ. NK-cell activation and antibody-dependent cellular cytotoxicity induced by rituximab-coated target cells is inhibited by the C3b component of complement. Blood. 2008;111(3):1456–63.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Wang X, Mathieu M, Brezski RJ. IgG Fc engineering to modulate antibody effector functions. Protein Cell. 2018;9(1):63–73.CrossRefGoogle Scholar
  154. 154.
    Niwa R, Satoh M. The current status and prospects of antibody engineering for therapeutic use: focus on Glycoengineering technology. J Pharm Sci. 2015;104(3):930–41.CrossRefGoogle Scholar
  155. 155.
    Derer S, Kellner C, Berger S, Valerius T, Peipp M. Fc engineering: design, expression, and functional characterization of antibody variants with improved effector function. In: Chames P, editor. Antibody engineering: methods and protocols. 2nd ed. Totowa: Humana Press; 2012. p. 519–36.CrossRefGoogle Scholar
  156. 156.
    Oganesyan V, Damschroder MM, Leach W, Wu H, Dall’Acqua WF. Structural characterization of a mutated, ADCC-enhanced human Fc fragment. Mol Immunol. 2008;45(7):1872–82.CrossRefGoogle Scholar
  157. 157.
    Mimoto F, Igawa T, Kuramochi T, Katada H, Kadono S, Kamikawa T, Shida-Kawazoe M, Hattori K. Novel asymmetrically engineered antibody Fc variant with superior FcγR binding affinity and specificity compared with afucosylated Fc variant. MAbs. 2013;5(2):229–36.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Bruckheimer EM, Fazenbaker CA, Gallagher S, Mulgrew K, Fuhrmann S, Coffman KT, Walsh W, Ready S, Cook K, Damschroder M, Kinch M, Kiener PA, Woods R, Gao C, Dall’Acqua W, Wu H, Coats S. Antibody-dependent cell-mediated cytotoxicity effector-enhanced EphA2 agonist monoclonal antibody demonstrates potent activity against human tumors. Neoplasia. 2009;11(6):509–17.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC, Vielmetter J, Carmichael DF, Hayes RJ, Dahiyat BI. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci U S A. 2006;103(11):4005–10.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J Biol Chem. 2001;276(9):6591–604.CrossRefGoogle Scholar
  161. 161.
    Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H, Burke S, Huang L, Johnson S, Bonvini E, Koenig S. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells <em>in vitro</em> and controls tumor expansion <em>in vivo</em> via low-affinity activating Fcγ receptors. Cancer Res. 2007;67(18):8882–90.CrossRefGoogle Scholar
  162. 162.
    Idusogie EE, Wong PY, Presta LG, Gazzano-Santoro H, Totpal K, Ultsch M, Mulkerrin MG. Engineered antibodies with increased activity to recruit complement. J Immunol. 2001;166(4):2571–5.CrossRefGoogle Scholar
  163. 163.
    Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol. 2007;44(7):1524–34.CrossRefGoogle Scholar
  164. 164.
    Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SHA, Presta LG. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277(30):26733–40.CrossRefGoogle Scholar
  165. 165.
    Yu X, Marshall MJE, Cragg MS, Crispin M. Improving antibody-based cancer therapeutics through glycan engineering. BioDrugs. 2017;31(3):151–66.CrossRefGoogle Scholar
  166. 166.
    Weiskopf K, Weissman IL. Macrophages are critical effectors of antibody therapies for cancer. MAbs. 2015;7(2):303–10.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Liu SD, Chalouni CM, Young J, Junttila TT, Sliwkowski MX, Lowe JB. Afucosylated antibodies increase activation of FcγRIIIa-dependent signaling components to intensify processes promoting ADCC. Cancer Immunol Res. 2015;3(2):173–83.CrossRefGoogle Scholar
  168. 168.
    Mizushima T, Yagi H, Takemoto E, Shibata-Koyama M, Isoda Y, Iida S, Masuda K, Satoh M, Kato K. Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans. Genes Cells. 2011;16(11):1071–80.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Sehn LH, Assouline SE, Stewart DA, Mangel J, Gascoyne RD, Fine G, Frances-Lasserre S, Carlile DJ, Crump M. A phase 1 study of obinutuzumab induction followed by 2 years of maintenance in patients with relapsed CD20-positive B-cell malignancies. Blood. 2012;119(22):5118–25.CrossRefGoogle Scholar
  170. 170.
    Sehn LH, Goy A, Offner FC, Martinelli G, Caballero MD, Gadeberg O, Baetz T, Zelenetz AD, Gaidano G, Fayad LE, Buckstein R, Friedberg JW, Crump M, Jaksic B, Zinzani PL, Iyer SP, Sahin D, Chai A, Fingerle-Rowson G, Press OW. Randomized phase II trial comparing Obinutuzumab (GA101) with rituximab in patients with relapsed CD20+ indolent B-cell non-Hodgkin lymphoma: final analysis of the GAUSS study. J Clin Oncol. 2015;33(30):3467–74.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Nesspor TC, Raju TS, Chin C-N, Vafa O, Brezski RJ. Avidity confers FcγR binding and immune effector function to aglycosylated immunoglobulin G1. J Mol Recognit. 2012;25(3):147–54.CrossRefGoogle Scholar
  172. 172.
    Nose M, Wigzell H. Biological significance of carbohydrate chains on monoclonal antibodies. Proc Natl Acad Sci. 1983;80(21):6632–6.CrossRefGoogle Scholar
  173. 173.
    Pound JD, Lund J, Jefferis R. Aglycosylated chimaeric human IgG3 can trigger the human phagocyte respiratory burst. Mol Immunol. 1993;30(3):233–41.CrossRefGoogle Scholar
  174. 174.
    Sarmay G, Lund J, Rozsnyay Z, Gergely J, Jefferis R. Mapping and comparison of the interaction sites on the Fc region of IgG responsible for triggering antibody dependent cellular cytotoxicity (ADCC) through different types of human Fcγ receptor. Mol Immunol. 1992;29(5):633–9.CrossRefGoogle Scholar
  175. 175.
    Tao MH, Morrison SL. Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J Immunol. 1989;143(8):2595–601.PubMedGoogle Scholar
  176. 176.
    Woof JM, Burton DR. Human antibody–Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol. 2004;4:89.CrossRefGoogle Scholar
  177. 177.
    Ober RJ, Martinez C, Lai X, Zhou J, Ward ES. Exocytosis of IgG as mediated by the receptor, FcRn: an analysis at the single-molecule level. Proc Natl Acad Sci U S A. 2004;101(30):11076–81.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Ober RJ, Martinez C, Vaccaro C, Zhou J, Ward ES. Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J Immunol. 2004;172(4):2021–9.CrossRefGoogle Scholar
  179. 179.
    Prabhat P, Gan Z, Chao J, Ram S, Vaccaro C, Gibbons S, Ober RJ, Ward ES. Elucidation of intracellular recycling pathways leading to exocytosis of the Fc receptor, FcRn, by using multifocal plane microscopy. Proc Natl Acad Sci. 2007;104(14):5889–94.CrossRefGoogle Scholar
  180. 180.
    Oganesyan V, Damschroder MM, Cook KE, Li Q, Gao C, Wu H, Dall’Acqua WF. Structural insights into neonatal Fc receptor-based recycling mechanisms. J Biol Chem. 2014;289(11):7812–24.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IWL, Sproule TJ, Lazar GA, Roopenian DC, Desjarlais JR. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol. 2010;28:157.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW, Lien S, Starovasnik MA, Lowman HB. Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol. 2009;182(12):7663–71.CrossRefGoogle Scholar
  183. 183.
    Dall’Acqua WF, Kiener PA, Wu H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem. 2006;281(33):23514–24.CrossRefGoogle Scholar
  184. 184.
    Majumdar R, Esfandiary R, Bishop SM, Samra HS, Middaugh CR, Volkin DB, Weis DD. Correlations between changes in conformational dynamics and physical stability in a mutant IgG1 mAb engineered for extended serum half-life. MAbs. 2015;7(1):84–95.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2020

Authors and Affiliations

  • Brittney J. Mills
    • 1
    Email author
  • Ehab M. Moussa
    • 1
  • Feroz Jameel
    • 1
  1. 1.Formulation Development, New Biological Entities, AbbVie (United States)North ChicagoUSA

Personalised recommendations