Advertisement

A Conceptual Framework for Developing a Customized I 4.0 Education Scale: An Exploratory Research

  • Yunus KaymazEmail author
  • İnanç Kabasakal
  • Ural Gökay Çiçekli
  • Murat Kocamaz
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The fourth industrial revolution proposes digitization and networking by providing more productive, intelligent, controllable, and transparent factory environment. Although organizations have increasing attention to such a paradigm, changes in production and automation technologies led organizations to consider various areas. The necessity of individual qualifications and skills will eventually require more qualified managers. Furthermore, in a high technological environment which requires expertise on new materials, machines and information need more skilled labour. The increased complexity of workspaces eventually resulted in a need for a high level of education for the employees. The presented study contributes to research by providing a framework to structure an education scale in the context of Industry 4.0. Preliminary work for an I 4.0 education scale through an extensive literature review and academic reviews were provided.

Keywords

Industry 4.0 Employment qualification Production technologies 

References

  1. 1.
    Grzelczak, A., Kosacka, M., Werner-Lewandowska, K.: Employees competences for Industry 4.0 in Poland–preliminary research results. DEStech Transactions on Engineering and Technology Research, (icpr) (2017)Google Scholar
  2. 2.
    Aulbur, W., Bigghe, R.: Skill development for Industry 4.0: BRICS skill development working group. Roland Berger GMBH (2016)Google Scholar
  3. 3.
    Gebhardt, J., Grimm, A., Neugebauer, L.M.: Developments 4.0 prospects on future requirements and impacts on work and vocational education. J. Techn. Educ. 3(2), 117–133 (2015)Google Scholar
  4. 4.
    Hecklau, F., Galeitzke, M., Flachs, S., Kohl, H.: Holistic approach for human resource management in Industry 4.0. Procedia Cirp 54, 1–6 (2016)CrossRefGoogle Scholar
  5. 5.
    Pinzone, M., Fantini, P., Perini, S., Garavaglia, S., Taisch, M., Miragliotta, G.: Jobs and skills in Industry 4.0: an exploratory research. In: IFIP International Conference on Advances in Production Management Systems, pp. 282–288. Springer, Cham, September 2017Google Scholar
  6. 6.
    Prifti, L., Knigge, M., Kienegger, H., Krcmar, H.: A Competency Model for “Industrie 4.0”. Employees (2017)Google Scholar
  7. 7.
    Fitsilis, P., Tsoutsa, P., Gerogiannis, V.: Industry 4.0: required personnel competences. Industrey 4.0 3(3), 130–133 (2018)Google Scholar
  8. 8.
    Gittler, T., Relea, E., Corti, D., Corani, G., Weiss, L., Cannizzaro, D., Wegener, K.: Towards predictive quality management in assembly systems with low quality low quantity data - a methodological approach. Procedia CIRP 79, 125–130 (2019)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Mannino, S., Scampicchio, M.: Nanatechnology and food quality control. Vet. Res. Commun. 31(1), 149–151 (2007)CrossRefGoogle Scholar
  11. 11.
    Kuswandi, B., Futra, D., Heng, L.Y.: Nanosensors for the Detection of Food Contaminants, In: A. Grumezescu, A. Oprea (eds.) Nanotechnology Applications in Food. Academic Press (2017)Google Scholar
  12. 12.
    Manić, M., Miltenović, V., Stojković, M., Banić, M.: Feature models in virtual product development. Strojniski Vestnik/J. Mech. Eng. 56(3) (2010) Google Scholar
  13. 13.
    Ale Ebrahim, N., Ahmed, S., Taha, Z.: Modified stage-gate: A conceptual model of virtual product development process. Afr. J. Mark. Manag. 1(9), 211–219 (2009)Google Scholar
  14. 14.
    Berg, L.P., Vance, J.M.: Industry use of virtual reality in product design and manufacturing: a survey. Virtual Reality 21(1), 1–17 (2017)CrossRefGoogle Scholar
  15. 15.
    da Silva, G.C., Kaminski, P.C.: Selection of virtual and physical prototypes in the product development process. Int. J. Adv. Manuf. Technol. 84(5–8), 1513–1530 (2016)Google Scholar
  16. 16.
    Lemu, H.G.: Study of capabilities and limitations of 3D printing technology. In: AIP Conference Proceedings, vol. 1431, No. 1, pp. 857–865. AIP, April 2012Google Scholar
  17. 17.
    Dimitrov, D., Van Wijck, W., Schreve, K., De Beer, N.: Investigating the achievable accuracy of three dimensional printing. Rapid Prototyping Journal 12(1), 42–52 (2006)CrossRefGoogle Scholar
  18. 18.
    Zhong, R.Y., Xu, X., Klotz, E., Newman, S.T.: Intelligent manufacturing in the context of industry 4.0: a review. Engineering 3(5), 616–630 (2017)CrossRefGoogle Scholar
  19. 19.
    Li, X., Lu, R., Liang, X., Shen, X., Chen, J., Lin, X.: Smart community: an Internet of Things application. IEEE Commun. Mag. 49(11), 68–75 (2011)CrossRefGoogle Scholar
  20. 20.
    Doil, F., Schreiber, W., Alt, T., Patron, C.: Augmented reality for manufacturing planning. In: Proceedings of the Workshop on Virtual Environments 2003, pp. 71–76. ACM, May 2003Google Scholar
  21. 21.
    Nee, A.Y.C., Ong, S.K., Chryssolouris, G., Mourtzis, D.: Augmented reality applications in design and manufacturing. CIRP Ann. 61(2), 657–679 (2012)CrossRefGoogle Scholar
  22. 22.
    Mourtzis, D., Vlachou, E., Zogopoulos, V., Fotini, X.: Integrated production and maintenance scheduling through machine monitoring and augmented reality: an industry 4.0 approach. In: IFIP Advances in Information and Communication Technology, pp. 354–362 (2017).  https://doi.org/10.1007/978-3-319-66923-6_42
  23. 23.
    Mendoza, M., Mendoza, M., Mendoza, E., González, E.: Augmented reality as a tool of training for data collection on torque auditing. Procedia Comput. Sci. 75, 5–11 (2015)CrossRefGoogle Scholar
  24. 24.
    Hakkarainen, M., Woodward, C., Billinghurst, M.: Augmented assembly using a mobile phone. In: 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (2008)Google Scholar
  25. 25.
    Wirz, R., Marin, R. (n.d.). Remote programming of an Internet tele-lab for learning visual servoing techniques: a case study. In: 2004 IEEE International Conference on Systems, Man and CyberneticsGoogle Scholar
  26. 26.
    Marin, R., Sanz, P.J., Nebot, P., Wirz, R.: A multimodal interface to control a robot arm via the web: a case study on remote programming. IEEE Trans. Industr. Electron. 52(6), 1506–1520 (2005)CrossRefGoogle Scholar
  27. 27.
    Shrouf, F., Ordieres, J., Miragliotta, G.: Smart factories in industry 4.0: a review of the concept and of energy management approached in production based on the Internet of Things paradigm. In: 2014 IEEE International Conference on Industrial Engineering and Engineering Management (2014)Google Scholar
  28. 28.
    Primiceri, P., Visconti, P.: Solar-powered LED-based lighting facilities: an overview on recent technologies and embedded IoT devices to obtain wireless control, energy savings and quick maintenance. J. Eng. Appl. Sci. ARPN 12(1), 140–150 (2017)Google Scholar
  29. 29.
    Fleischmann, H., Kohl, J., Franke, J., Reidt, A., Duchon, M., Krcmar, H.: Improving maintenance processes with distributed monitoring systems. In: 2016 IEEE 14th International Conference on Industrial Informatics (INDIN) (2016)Google Scholar
  30. 30.
    Yamato, Y., Fukumoto, Y., Kumazaki, H.: Predictive maintenance platform with sound stream analysis in edges. J. Inf. Process. 25, 317–320 (2017)Google Scholar
  31. 31.
    Yano, K., Akitomi, T., Ara, K., Watanabe, J., Tsuji, S., Sato, N., Moriwaki, N.: Profiting from IoT: The key is very-large-scale happiness integration. In: 2015 Symposium on VLSI Circuits (VLSI Circuits) (2015)Google Scholar
  32. 32.
    Zangl, G., Oberwinkler, C.P.: Predictive data mining techniques for production optimization. In: Proceedings of SPE Annual Technical Conference and Exhibition (2004)Google Scholar
  33. 33.
    Bastos, P., Lopes, I., Pires, L.C.M.: Application of data mining in a maintenance system for failure prediction. In: Safety, Reliability and Risk Analysis: Beyond the Horizon: 22nd European Safety and Reliability, vol. 1, pp. 933–940 (2014)Google Scholar
  34. 34.
    Cheng, C.-W., Yao, H.-Q., Wu, T.-C.: Applying data mining techniques to analyze the causes of major occupational accidents in the petrochemical industry. J. Loss Prev. Process Ind. 26(6), 1269–1278 (2013)CrossRefGoogle Scholar
  35. 35.
    Eaton, C., Deroos, D., Deutsch, T., Lapis, G., Zikopoulos, P.C.: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. Mc Graw-Hill Companies (2012). 978-0-07-179053-6Google Scholar
  36. 36.
    Sagiroglu, S., Sinanc, D.: Big data: a review. In: 2013 International Conference on Collaboration Technologies and Systems (CTS), pp. 42–47. IEEE, May 2013Google Scholar
  37. 37.
    Gantz, J., Reinsel, D.: Extracting value from chaos. IDC iView, pp. 1–12 (2011)Google Scholar
  38. 38.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  39. 39.
    Chen, M., Mao, S., Liu, Y.: Big data: A survey. Mobile networks and applications 19(2), 171–209 (2014)CrossRefGoogle Scholar
  40. 40.
    Bakshi, K.: Considerations for Big Data: Architecture and Approach. In: Aerospace Conference IEEE, Big Sky Montana, March 2012Google Scholar
  41. 41.
    Negash, S.: Business intelligence. Commun. Assoc. Inf. Syst. 13, 177–195 (2004)Google Scholar
  42. 42.
    Rohloff, R.: Health-care BI: a tool for meaningful analysis. Healthc. Financ. Manag. 65(5), 100–108 (2011)Google Scholar
  43. 43.
    Foshay, N., Kuziemsky, C.: Towards an implementation framework for business intelligence in healthcare. Int. J. Inf. Manage. 34(1), 20–27 (2014)CrossRefGoogle Scholar
  44. 44.
    Mettler, T., Vimarlund, V.: Understanding business intelligence in the context of healthcare. Health Inf. J. 15(3), 254–264 (2009)CrossRefGoogle Scholar
  45. 45.
    Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: From big data to big impact. MIS Q. 36(4) (2012)Google Scholar
  46. 46.
    Kalogirou, S.A.: Artificial intelligence for the modeling and control of combustion processes: a review. Prog. Energy Combust. Sci. 29, 515–566 (2003)CrossRefGoogle Scholar
  47. 47.
    Mellit, A., Kalogirou, S.A., Hontoria, L., Shaari, S.: Artificial intelligence techniques for sizing photovoltaic systems: a review. Renew. Sustain. Energy Rev. 13(2), 406–419 (2009)CrossRefGoogle Scholar
  48. 48.
    Helu, M., Hedberg Jr., T.: Enabling smart manufacturing research and development using a product lifecycle test bed. Procedia Manuf 1, 86–97 (2015)CrossRefGoogle Scholar
  49. 49.
    Stopp, S., Wolff, T., Irlinger, F., Lueth, T.: A new method for printer calibration and contour accuracy manufacturing with 3D-print technology. Rapid Prototyping J. 14(3), 167–172 (2008)CrossRefGoogle Scholar
  50. 50.
    Dev-Anand, M., Selveraj, T., Kumanan, S., Ajith-Bosco-Raj, T.: Robotics in online inspection and quality control using moment algorithm. Adv. Prod. Eng. Manag. 7, 27–38 (2012)Google Scholar
  51. 51.
    Mellit, A., Kalogirou, S.A.: Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci. 34(5), 574–632 (2008)CrossRefGoogle Scholar
  52. 52.
    Kusiak, A.Y., Sunderesh, D., Heragu, S.: Expert systems and optimization. IEEE Trans. Software Eng. 15(8), 1017–1020 (1989)CrossRefGoogle Scholar
  53. 53.
    Kodi, A.K., Louri, A.: Energy-efficient and bandwidth reconfigurable photonic networks for high-performance computing (hpc) systems. IEEE J. Sel. Top. Quantum Electron. 17(2), 384–395 (2011)CrossRefGoogle Scholar
  54. 54.
    Gerhardt, B., Griffin, K., Klemann, R.: Unlocking Value in the Fragmented World of Big Data Analytics. Cisco Internet Business Solutions Group, June 2012. http://www.cisco.com/web/about/ac79/docs/sp/InformationInfomediaries.pdf
  55. 55.
    Russom, P.: Big data analytics. TDWI Best Pract. Report, Fourth Q. 19(4), 1–34 (2011)Google Scholar
  56. 56.
    Singh, S., Singh, N.: Big data analytics. In: 2012 International Conference on Communication, Information & Computing Technology Mumbai India. IEEE, October 2011Google Scholar
  57. 57.
    Shen, W.M., Hao, Q., Yoon, H.J., Norrie, D.H.: Applications of agent-based systems in intelligent manufacturing: an updated review. Adv. Eng. Inform. 20(4), 415–431 (2006)CrossRefGoogle Scholar
  58. 58.
    Zijm, W.H.M.: Towards intelligent manufacturing planning and control systems. OR-Spectrum 22(3), 313–345 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  59. 59.
    Kanawaday, A., Sane, A.: Machine learning for predictive maintenance of industrial machines using IoT sensor data. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 87–90. IEEE, November 2017Google Scholar
  60. 60.
    Poon, T.C., Choy, K.L., Chow, H.K.H., Lau, H.C.W., Chan, F.T.S., Ho, K.C.: A RFID case-based logistics resource management system for managing order-picking operations in warehouses. Expert Syst. Appl. 36(4), 8277–8301 (2009)CrossRefGoogle Scholar
  61. 61.
    Huang, G.Q., Zhang, Y.F., Chen, X., Newman, S.T.: RFID-enabled real-time wireless manufacturing for adaptive assembly planning and control. J. Intell. Manuf. 19(6), 701–713 (2008)CrossRefGoogle Scholar
  62. 62.
    Zhang, Y.F., Jiang, P., Huang, G.: RFID-based smart Kanbans for Just-In-Time manufacturing. Int J Mater. Prod. Tech. 33(1–2), 170–184 (2008)CrossRefGoogle Scholar
  63. 63.
    Zhong, R.Y., Lan, S., Xu, C., Dai, Q., Huang, G.Q.: Visualization of RFID-enabled shopfloor logistics Big Data in Cloud Manufacturing. Int. J. Adv. Manuf. Tech. 84(1–4), 5–16 (2016)CrossRefGoogle Scholar
  64. 64.
    Qu, T., Lei, S.P., Wang, Z.Z., Nie, D.X., Chen, X., Huang, G.Q.: IoT-based real-time production logistics synchronization system under smart cloud manufacturing. Int. J. Adv. Manuf. Tech. 84(1–4), 147–164 (2016)CrossRefGoogle Scholar
  65. 65.
    Selcuk, S.: Predictive maintenance, its implementation and latest trends. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 231(9), 1670–1679 (2016)CrossRefGoogle Scholar
  66. 66.
    Sallam, R.L., Richardson, J., Hagerty, J., Hostmann, B.: Magic Quadrant for Business Intelligence Platforms. Gartner Group, Stamford (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yunus Kaymaz
    • 1
    Email author
  • İnanç Kabasakal
    • 1
  • Ural Gökay Çiçekli
    • 1
  • Murat Kocamaz
    • 1
  1. 1.Business AdministrationEge UniversityBornovaTurkey

Personalised recommendations