Advertisement

Bitcoin Security with Post Quantum Cryptography

  • Meryem Cherkaoui SemmouniEmail author
  • Abderrahmane Nitaj
  • Mostafa Belkasmi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11704)

Abstract

In a future quantum world with a large quantum computer, the security of the digital signatures used for Bitcoin transactions will be broken by Shor’s algorithm. Bitcoin has to switch to post-quantum cryptography. In this paper, we show that the post quantum signatures based on LWE and ring LWE are the most promising to use in the presence of large quantum computers running Shor’s algorithm.

Keywords

Bitcoin Elliptic curve Lattice Learning with error 

References

  1. 1.
    Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aggarwal, D., Brennen, G.K., Lee, T., Santha, M., Tomamichel, M.: Quantum attacks on Bitcoin, and how to protect against them. arXiv preprint arXiv:1710.10377 (2017)
  3. 3.
    Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Marson, G.A.: An efficient lattice-based signature scheme with provably secure instantiation. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 44–60. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31517-1_3CrossRefGoogle Scholar
  4. 4.
    Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler, smaller, fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38980-1_8CrossRefGoogle Scholar
  5. 5.
    Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22006-7_34CrossRefGoogle Scholar
  6. 6.
    Babai, L.: A las vegas-NC algorithm for isomorphism of graphs with bounded multiplicity of eigenvalues. In: 27th FOCS, pp. 303–312. IEEE Computer Society Press, Toronto, 27–29 October 1986Google Scholar
  7. 7.
    Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. In: 32nd ACM STOC, pp. 435–440. ACM Press, Portland, 21–23 May 2000Google Scholar
  8. 8.
    Barreto, P.S., Longa, P., Naehrig, M., Ricardini, J.E., Zanon, G.: Sharper ring-LWE signatures. Cryptology ePrint Archive, Report 2016/1026 (2016)Google Scholar
  9. 9.
    Chopra, A.: Improved parameters for the ring-TESLA digital signature scheme. IACR Cryptology ePrint Archive 2016, p. 1099 (2016)Google Scholar
  10. 10.
    Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_3CrossRefGoogle Scholar
  11. 11.
    Dworkin, M.J.: SHA-3 standard: permutation-based hash and extendable-output functions. National Institute of Standards and Technology (NIST), Gaithersburg (MD), USA, August 2015Google Scholar
  12. 12.
    FIPS PUB 186–4, Digital Signature Standard (DSS), July 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
  13. 13.
    FIPS PUB 180–4, Secure Hash Standard (SHS). https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf
  14. 14.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the ACM STOC 1996, pp. 212–219. ACM, May 1996Google Scholar
  15. 15.
    Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 513–534 (1982)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_1CrossRefGoogle Scholar
  17. 17.
    Nakamoto, S.: Bitcoin: a peer-to-peer digital cash system, 24 May 2009. https://bitcoin.org/bitcoin.pdf
  18. 18.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Meryem Cherkaoui Semmouni
    • 1
    Email author
  • Abderrahmane Nitaj
    • 2
  • Mostafa Belkasmi
    • 1
  1. 1.SIMEMohammed V University, ENSIAS RabatRabatMorocco
  2. 2.University of Caen NormandieCaenFrance

Personalised recommendations