StakeCube: Combining Sharding and Proof-of-Stake to Build Fork-Free Secure Permissionless Distributed Ledgers

  • Antoine Durand
  • Emmanuelle AnceaumeEmail author
  • Romaric Ludinard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11704)


Our work focuses on the design of a scalable permissionless blockchain in the proof-of-stake setting. In particular, we use a distributed hash table as a building block to set up randomized shards, and then leverage the sharded architecture to validate blocks in an efficient manner. We combine verifiable Byzantine agreements run by shards of stakeholders and a block validation protocol to guarantee that forks occur with negligible probability. We impose induced churn to make shards robust to eclipse attacks, and we rely on the UTXO coin model to guarantee that any stakeholder action is securely verifiable by anyone. Our protocol works against adaptive adversary, and makes no synchrony assumption beyond what is required for the byzantine agreement.


Blockchain Proof-of-stake Distributed Hash Table Sharding 



We are thankful to Gérard Memmi (LTCI Telecom ParisTech), and David Leporini, Guillaume Hebert and Thomas Domingos (Atos BDS) for their fruitful discussions. This work was carried as part of the Blockchain Advanced Research & Technologies (BART) Initiative and the Institute for Technological Research SystemX, and therefore granted with public funds within the scope of the French Program Investissements d’Avenir.


  1. 1.
    Abraham, I., Malkhi, D.: The blockchain consensus layer and BFT. Bull. Eur. Assoc. Theor. Comput. Sci. 3(123) (2017) Google Scholar
  2. 2.
    Anceaume, E., Sericola, B., Ludinard, R., Tronel, F.: Modeling and evaluating targeted attacks in large scale dynamic systems. In: International Conference on Dependable Systems and Networks (DSN) (2011)Google Scholar
  3. 3.
    Anceaume, E., Ludinard, R., Ravoaja, A., Brasileiro, F.: PeerCube: a hypercube-based P2P overlay robust against collusion and churn. In: IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO) (2008)Google Scholar
  4. 4.
    Anceaume, E., Ludinard, R., Sericola, B.: Performance evaluation of large-scale dynamic systems. ACM SIGMETRICS Perform. Eval. Rev. 39(4), 108–117 (2012)CrossRefGoogle Scholar
  5. 5.
    Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: when space is of the essence. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 538–557. Springer, Cham (2014). Scholar
  6. 6.
    Awerbuch, B., Scheideler, C.: Towards scalable and robust overay networks. In: International Workshop on Peer-to-Peer Systems (IPTPS) (2007)Google Scholar
  7. 7.
    Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis: composable proof-of-stake blockchains with dynamic availability. In: ACM SIGSAC Conference on Computer and Communications Security (CCS) (2018)Google Scholar
  8. 8.
    David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). Scholar
  9. 9.
    Cascudo, I., David, B.: SCRAPE: scalable randomness attested by public entities. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 537–556. Springer, Cham (2017). Scholar
  10. 10.
    Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–90 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: Algorand agreement: Super Fast and Partition Resilient Byzantine Agreement. Technical report (2018).
  12. 12.
    Correia, M., Neves, N.F., Veríssimo, P.: From consensus to atomic broadcast: time-free byzantine-resistant protocols without signatures. Comput. J. 49(1), 82–96 (2006)CrossRefGoogle Scholar
  13. 13.
    Daian, P., Pass, R., Shi, E.: Snow White: Provably Secure Proofs of Stake. Cryptology ePrint Archive, Report 2016/919 (2016).
  14. 14.
    EOS.IO: Technical white paper v2 (2019). Accessed 03 Oct 2019
  15. 15.
    Fiat, A., Saia, J., Young, M.: Making chord robust to byzantine attacks. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 803–814. Springer, Heidelberg (2005). Scholar
  16. 16.
    Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: Symposium on Operating Systems Principles (SOSP) (2017)Google Scholar
  17. 17.
    Hoeffding, W.: Probability Inequalities for sums of bounded random variables. In: Fisher, N.I., Sen, P.K. (eds.) The Collected Works of Wassily Hoeffding. Springer Series in Statistics (Perspectives in Statistics). Springer, New York (1994). Scholar
  18. 18.
    Intel: Hyperledger Sawtooth description (2019). Accessed 03 Oct 2019
  19. 19.
    Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. Cryptology ePrint Archive, Report 2016/889 (2016).
  20. 20.
    Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Omniledger: a secure, scale-out, decentralized ledger via sharding. In: IEEE Symposium on Security and Privacy (SSP) (2018)Google Scholar
  21. 21.
    Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: IEEE Symposium on Foundations of Computer Science (1999)Google Scholar
  22. 22.
    Moran, T., Orlov, I.: Proofs of space-time and rational proofs of storage. In: Cryptology ePrint Archive, Report 2016/035 (2016)Google Scholar
  23. 23.
    Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008).
  24. 24.
    Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2), 256–267 (1983)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Syta, E., et al.: Scalable bias-resistant distributed randomness. In: IEEE Symposium on Security and Privacy (SSP) (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antoine Durand
    • 1
  • Emmanuelle Anceaume
    • 2
    Email author
  • Romaric Ludinard
    • 3
  1. 1.IRT SystemX, Paris-SaclayParisFrance
  2. 2.CNRS, Univ Rennes, Inria, IRISARennesFrance
  3. 3.IMT Atlantique, IRISANantesFrance

Personalised recommendations