Advertisement

Antioxidant, Antimicrobial, Analgesic, Anti-inflammatory and Antipyretic Effects of Bioactive Compounds from Passiflora Species

  • Narendra Narain
  • Saravanan Shanmugam
  • Adriano Antunes de Souza Araújo
Chapter

Abstract

This chapter reviews the research work undertaken to identify and quantify bioactive compounds present in different parts (pulp, peel and seeds) of various Passiflora species. Passion fruit is rich in minerals (calcium and phosphorus) and vitamins, especially A, C, thiamine, riboflavin and niacin. It is also a very good source of carotenoids, flavonoids anthocyanins and alkaloids. The research also reveals the potential of different dosages of various extracts isolated from the different species of Passiflora as applied in various pharmaceutical applications such as antioxidant, antimicrobial, analgesic, anti-nociceptive, anti-inflammatory and antipyretic activities caused by newly identified flavonoid compounds in that species. The review presents up-to-date knowledge on different Passiflora species and its potential for pharmaceutical applications.

Keywords

Passion fruit Chemical constituent Pharmaceutical applications 

References

  1. Abreu PP, Souza MM, Santos EA, Pires MV, Pires MM, de Almeida A-AF (2009) Passion flower hybrids and their use in the ornamental plant market: perspectives for sustainable development with emphasis on Brazil. Euphytica 166(3):307–315.  https://doi.org/10.1007/s10681-008-9835-xCrossRefGoogle Scholar
  2. Alasalvar C, Shahidi F (2013) Dried fruits: phytochemicals and health effects. Wiley-Blackwell, Hoboken, NJCrossRefGoogle Scholar
  3. Alessandra B, Lorenzo C, Luca P, Tullia GT, Flavia G, Stefania C, Andrea MM, Filippo A, Marisa L (2006) Phenol content related to antioxidant and antimicrobial activities of Passiflora spp. extracts. Eur Food Res Technol 223:102–109Google Scholar
  4. Almeida JM, Lima VA, Giloni-Lima PC, Knob A (2015) Passion fruit peel as novel substrate for enhanced β-glucosidases production by Penicillium verruculosum: potential of the crude extract for biomass hydrolysis. Biomass Bioenergy 72:216–226.  https://doi.org/10.1016/j.biombioe.2014.11.002CrossRefGoogle Scholar
  5. Anzoise M, Marrassini C, Bach H, Gorzalczany S (2016) Beneficial properties of Passiflora caerulea on experimental colitis. J Ethnopharmacol 194:137–145.  https://doi.org/10.1016/j.jep.2016.09.002CrossRefPubMedGoogle Scholar
  6. Benincá JP, Montanher AB, Zucolotto SM, Schenkel EP, Fröde TS (2007) Evaluation of the anti-inflammatory efficacy of Passiflora edulis. Food Chem 104(3):1097–1105.  https://doi.org/10.1016/j.foodchem.2007.01.020CrossRefGoogle Scholar
  7. Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10(4):221–247.  https://doi.org/10.1111/j.1541-4337.2011.00156.xCrossRefGoogle Scholar
  8. Carr MKV (2013) The water relations and irrigation requirements of passion fruit (Passiflora edulis Sims): a review. Exp Agric 49(4):585–596.  https://doi.org/10.1017/S0014479713000240CrossRefGoogle Scholar
  9. Casierra-Posada F, Jarma-Orozco A (2016) Chapter 22: Nutritional composition of Passiflora species. In Nutritional composition of fruit cultivars, pp 517–534. doi: https://doi.org/10.1016/B978-0-12-408117-8.00022-2CrossRefGoogle Scholar
  10. Cazarin CB, da Silva JK, Colomeu TC, Batista ÂG, Vilella CA, Ferreira AL et al (2014) Passiflora edulis peel intake and ulcerative colitis: approaches for prevention and treatment. Exp Biol Med 239(5):542–551.  https://doi.org/10.1177/1535370214525306CrossRefGoogle Scholar
  11. Cazarin CBB, da Silva JK, Colomeu TC, Batista ÂG, Meletti LMM, Paschoal JAR, Maróstica Júnior MR (2015) Intake of Passiflora edulis leaf extract improves antioxidant and anti-inflammatory status in rats with 2,4,6-trinitrobenzenesulphonic acid induced colitis. J Funct Foods 17:575–586.  https://doi.org/10.1016/j.jff.2015.05.034CrossRefGoogle Scholar
  12. Cerqueira-Silva CBM, Conceição LDHCS, Souza AP, Corrêa RX (2014a) A history of passion fruit woodiness disease with emphasis on the current situation in Brazil and prospects for Brazilian passion fruit cultivation. Eur J Plant Pathol 139(2):261–270.  https://doi.org/10.1007/s10658-014-0391-zCrossRefGoogle Scholar
  13. Cerqueira-Silva CBM, Jesus ON, Santos ESL, Corrêa RX, Souza AP (2014b) Genetic breeding and diversity of the genus Passiflora: progress and perspectives in molecular and genetic studies. Int J Mol Sci 15(8):14122–14152.  https://doi.org/10.3390/ijms150814122CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coleta M, Batista MT, Campos MG, Carvalho R, Cotrim MD, de Lima TCM, da Cunha AP (2006) Neuropharmacological evaluation of the putative anxiolytic effects of Passiflora edulis Sims, its sub-fractions and flavonoid constituents. Phytother Res 20(12):1067–1073.  https://doi.org/10.1002/ptr.1997CrossRefPubMedGoogle Scholar
  15. Colomeu TC, Figueiredo D, Cazarin CBB, Schumacher NSG, Maróstica MR, Meletti LMM, Zollner RL (2014) Antioxidant and anti-diabetic potential of Passiflora alata Curtis aqueous leaves extract in type 1 diabetes mellitus (NOD-mice). Int Immunopharmacol 18(1):106–115.  https://doi.org/10.1016/j.intimp.2013.11.005CrossRefPubMedGoogle Scholar
  16. Contreras-Calderón J, Calderón-Jaimes L, Guerra-Hernández E, García-Villanova B (2011) Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res Int 44(7):2047–2053.  https://doi.org/10.1016/j.foodres.2010.11.003CrossRefGoogle Scholar
  17. Corrêa RCG, Peralta RM, Haminiuk CWI, Maciel GM, Bracht A, Ferreira ICFR (2016) The past decade findings related with nutritional composition, bioactive molecules and biotechnological applications of Passiflora spp. (passion fruit). Trends Food Sci Technol 58:79–95.  https://doi.org/10.1016/J.TIFS.2016.10.006CrossRefGoogle Scholar
  18. Costa GM, Cárdenas PA, Gazola AC, Aragón DM, Castellanos L, Reginatto FH, Schenkel EP (2015) Isolation of C-glycosylflavonoids with α-glucosidase inhibitory activity from Passiflora bogotensis Benth by gradient high-speed counter-current chromatography. J Chromatogr B 990:104–110.  https://doi.org/10.1016/j.jchromb.2015.03.015CrossRefGoogle Scholar
  19. Cutri L, Nave N, Ami MB, Chayut N, Samach A, Dornelas MC (2013) Evolutionary, genetic, environmental and hormonal-induced plasticity in the fate of organs arising from axillary meristems in Passiflora spp. Mech Dev 130(1):61–69.  https://doi.org/10.1016/j.mod.2012.05.006CrossRefPubMedGoogle Scholar
  20. da Silva Morrone M, de Assis AM, da Rocha RF, Gasparotto J, Gazola AC, Costa GM, Moreira JCF (2013) Passiflora manicata (Juss.) aqueous leaf extract protects against reactive oxygen species and protein glycation in vitro and ex vivo models. Food Chem Toxicol 60:45–51.  https://doi.org/10.1016/j.fct.2013.07.028CrossRefPubMedGoogle Scholar
  21. da Silva JK, Cazarin CBB, Colomeu TC, Batista ÂG, Meletti LMM, Paschoal JAR, de Lima Zollner R (2013) Antioxidant activity of aqueous extract of passion fruit (Passiflora edulis) leaves: In vitro and in vivo study. Food Res Int 53(2):882–890.  https://doi.org/10.1016/j.foodres.2012.12.043CrossRefGoogle Scholar
  22. da Silva JK, Cazarin CBB, Batista ÂG, Maróstica M (2014) Effects of passion fruit (Passiflora edulis) byproduct intake in antioxidant status of Wistar rats tissues. LWT Food Sci Technol 59(2):1213–1219.  https://doi.org/10.1016/j.lwt.2014.06.060CrossRefGoogle Scholar
  23. de Medeiros PM, Ladio AH, Santos AMM, de Albuquerque UP (2013) Does the selection of medicinal plants by Brazilian local populations suffer taxonomic influence? J Ethnopharmacol 146(3):842–852.  https://doi.org/10.1016/j.jep.2013.02.013CrossRefGoogle Scholar
  24. Dembitsky VM, Poovarodom S, Leontowicz H, Leontowicz M, Vearasilp S, Trakhtenberg S, Gorinstein S (2011) The multiple nutrition properties of some exotic fruits: biological activity and active metabolites. Food Res Int 44(7):1671–1701.  https://doi.org/10.1016/j.foodres.2011.03.003CrossRefGoogle Scholar
  25. Devi Ramaiya S, Bujang JS, Zakaria MH, King WS, Shaffiq Sahrir MA (2013) Sugars, ascorbic acid, total phenolic content and total antioxidant activity in passion fruit (Passiflora) cultivars. J Sci Food Agric 93(5):1198–1205.  https://doi.org/10.1002/jsfa.5876CrossRefPubMedGoogle Scholar
  26. Dhawan K, Kumar S, Sharma A (2001) Anti-anxiety studies on extracts of Passiflora incarnata Linneaus. J Ethnopharmacol 78(2–3):165–170.  https://doi.org/10.1016/S0378-8741(01)00339-7CrossRefPubMedGoogle Scholar
  27. Dhawan K, Dhawan S, Sharma A (2004) Passiflora: a review update. J Ethnopharmacol 94(1):1–23.  https://doi.org/10.1016/j.jep.2004.02.023CrossRefPubMedGoogle Scholar
  28. do Socorro Fernandes Marques S, Libonati RMF, Sabaa-Srur AUO, Luo R, Shejwalkar P, Hara K, Smith RE (2016) Evaluation of the effects of passion fruit peel flour (Passiflora edulis forma flavicarpa) on metabolic changes in HIV patients with lipodystrophy syndrome secondary to antiretroviral therapy. Rev Bras 26(4):420–426.  https://doi.org/10.1016/j.bjp.2016.03.002CrossRefGoogle Scholar
  29. Doyama JT, Rodrigues HG, Novelli ELB, Cereda E, Vilegas W (2005) Chemical investigation and effects of the tea of Passiflora alata on biochemical parameters in rats. J Ethnopharmacol 96(3):371–374.  https://doi.org/10.1016/j.jep.2004.06.021CrossRefPubMedGoogle Scholar
  30. Echeverri F, Arango V, Quiñones W, Torres F, Escobar G, Rosero Y, Archbold R (2001) Passifloricins, polyketides α-pyrones from Passiflora foetida resin. Phytochemistry 56(8):881–885.  https://doi.org/10.1016/S0031-9422(00)00478-7CrossRefPubMedGoogle Scholar
  31. Eddy NB, Leimbach D (1953) Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutylamines. J Pharmacol Exp Therap 107(3):385–393. http://www.ncbi.nlm.nih.gov/pubmed/13035677Google Scholar
  32. Einbond LS, Reynertson KA, Luo X-D, Basile MJ, Kennelly EJ (2004) Anthocyanin antioxidants from edible fruits. Food Chem 84(1):23–28.  https://doi.org/10.1016/S0308-8146(03)00162-6CrossRefGoogle Scholar
  33. Espinal-Ruiz M, Restrepo-Sánchez L-P, Narváez-Cuenca C-E, McClements DJ (2016) Impact of pectin properties on lipid digestion under simulated gastrointestinal conditions: comparison of citrus and banana passion fruit (Passiflora tripartita var. Mollissima) pectins. Food Hydrocoll 52:329–342.  https://doi.org/10.1016/j.foodhyd.2015.05.042CrossRefGoogle Scholar
  34. Farhadi K, Esmaeilzadeh F, Hatami M, Forough M, Molaie R (2016) Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chem 199:847–855.  https://doi.org/10.1016/j.foodchem.2015.12.083CrossRefPubMedGoogle Scholar
  35. Farook NAM, Rajesh S, Jamuna M (2009) Inhibition of mineralization of urinary stone forming minerals by medicinal plants. E-J Chem 6(3):938–942.  https://doi.org/10.1155/2009/124168CrossRefGoogle Scholar
  36. Ferreres F, Sousa C, Valentão P, Andrade PB, Seabra RM, Gil-Izquierdo Á (2007) New C-deoxyhexosyl flavones and antioxidant properties of Passiflora edulis leaf extract. J Agric Food Chem 55(25):10187–10193.  https://doi.org/10.1021/jf072119yCrossRefPubMedGoogle Scholar
  37. Fiorentino A, D’Abrosca B, Pacifico S, Mastellone C, Piscopo V, Caputo R, Monaco P (2008) Isolation and structure elucidation of antioxidant polyphenols from quince (Cydonia vulgaris) peels. J Agric Food Chem 56(8):2660–2667.  https://doi.org/10.1021/jf800059rCrossRefPubMedGoogle Scholar
  38. Fritz KL, Seppanen CM, Kurzer MS, Saari Csallany A (2003) The in vivo antioxidant activity of soybean isoflavones in human subjects. Nutr Res 23(4):479–487.  https://doi.org/10.1016/S0271-5317(03)00005-8CrossRefGoogle Scholar
  39. Froehlich O, Duque C, Schreier P (1989) Volatile constituents of curuba (Passiflora mollissima) fruit. J Agric Food Chem 37(2):421–425.  https://doi.org/10.1021/jf00086a033CrossRefGoogle Scholar
  40. García-Ruiz A, Girones-Vilaplana A, León P, Moreno D, Stinco C, Meléndez-Martínez A, Ruales J (2017) Banana passion fruit (Passiflora mollissima (Kunth) L.H. Bailey): microencapsulation, phytochemical composition and antioxidant capacity. Molecules 22(1):85 (3–12).  https://doi.org/10.3390/molecules22010085CrossRefGoogle Scholar
  41. Gil M, Restrepo A, Millán L, Alzate L, Rojano B, Gil M (2014) Microencapsulation of banana passion fruit (Passiflora tripartita Var. Mollissima): a new alternative as a natural additive as antioxidant. Food Nutr Sci 5(5):671–682.  https://doi.org/10.4236/fns.2014.58078CrossRefGoogle Scholar
  42. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford. http://www.prometeus.nsc.ru/acquisitions/09-07-28/cont09f.ssiGoogle Scholar
  43. Ignacimuthu S, Ayyanar M, Sankarasivaraman K (2008) Ethnobotanical study of medicinal plants used by Paliyar tribals in Theni district of Tamil Nadu, India. Fitoterapia 79(7–8):562–568.  https://doi.org/10.1016/j.fitote.2008.06.003CrossRefPubMedGoogle Scholar
  44. Jiménez AM, Sierra CA, Rodríguez-Pulido FJ, González-Miret ML, Heredia FJ, Osorio C (2011) Physicochemical characterisation of gulupa (Passiflora edulis Sims. forma edulis) fruit from Colombia during the ripening. Food Res Int 44(7):1912–1918.  https://doi.org/10.1016/j.foodres.2010.11.007CrossRefGoogle Scholar
  45. Kirtikar KR, Basu BD (1975) Indian medicinal plants. Periodical Experts, Dehradun, IndiaGoogle Scholar
  46. Klimczak I, Małecka M, Szlachta M, Gliszczyńska-Świgło A (2007) Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. J Food Compos Anal 20(3–4):313–322.  https://doi.org/10.1016/j.jfca.2006.02.012CrossRefGoogle Scholar
  47. Koster R, Anderson M, De Beer EJ (1959) Acetic acid-induced analgesic screening. Federation Proceedings. http://en.journals.sid.ir/ViewPaper.aspx?ID=224522
  48. Kumar V, Sinha AK, Makkar HPS, de Boeck G, Becker K (2012) Dietary roles of non-starch polysachharides in human nutrition: A review. Crit Rev Food Sci Nutr 52(10):899–935.  https://doi.org/10.1080/10408398.2010.512671CrossRefPubMedGoogle Scholar
  49. Lam SK, Ng TB (2009) Passiflin, a novel dimeric antifungal protein from seeds of the passion fruit. Phytomedicine 16(2–3):172–180.  https://doi.org/10.1016/j.phymed.2008.12.025CrossRefPubMedGoogle Scholar
  50. Lee S-H, Park M-H, Heo S-J, Kang S-M, Ko S-C, Han J-S, Jeon Y-J (2010) Dieckol isolated from Ecklonia cava inhibits α-glucosidase and α-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice. Food Chem Toxicol 48(10):2633–2637.  https://doi.org/10.1016/j.fct.2010.06.032CrossRefPubMedGoogle Scholar
  51. Leite-Legatti AV, Batista ÂG, Dragano NRV, Marques AC, Malta LG, Riccio MF, Maróstica MR (2012) Jaboticaba peel: antioxidant compounds, antiproliferative and antimutagenic activities. Food Res Int 49(1):596–603.  https://doi.org/10.1016/j.foodres.2012.07.044CrossRefGoogle Scholar
  52. Leterme P, Buldgen A, Estrada F, Londoño AM (2006) Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chem 95(4):644–652.  https://doi.org/10.1016/j.foodchem.2005.02.003CrossRefGoogle Scholar
  53. Liu C-J, Lin J-Y (2012) Anti-inflammatory and anti-apoptotic effects of strawberry and mulberry fruit polysaccharides on lipopolysaccharide-stimulated macrophages through modulating pro−/anti-inflammatory cytokines secretion and Bcl-2/Bak protein ratio. Food Chem Toxicol 50(9):3032–3039.  https://doi.org/10.1016/j.fct.2012.06.016CrossRefPubMedGoogle Scholar
  54. Lobo Mario MCI (2009) Cultivo, Poscosecha y Comercialización de las Pasifloráceas en Colombia: Maracuyá, Granadilla, Gulupa y Curuba (1a. Edición). Bogotá, Colombia: Sociedad Colombiana de Ciencias Hortícolas. (L. E. F. Diego Miranda, Gerhard Fischer, Carlos Carranza, Stanislav Magnitskiy, Fanor Casierra, Wilson Piedrahita, Ed.) (First). Bogota, Colombia: Sociedad Colombiana de Ciencias Hortícolas. http://www.asohofrucol.com.co/archivos/biblioteca/biblioteca_118_cultivo_poscosechavp.pdf
  55. López-Vargas JH, Fernández-López J, Pérez-Álvarez JA, Viuda-Martos M (2013) Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Food Res Int 51(2):756–763.  https://doi.org/10.1016/j.foodres.2013.01.055CrossRefGoogle Scholar
  56. Lutomski J, Malek B, Rybacka L (1975) Pharmacochemical investigation of the raw materials from Passiflora genus—2. The pharmacochemical estimation of juices from the fruits of Passiflora edulis and Passiflora edulis forma flavicarpa. Planta Med 27(2):112–121.  https://doi.org/10.1055/s-0028-1097771CrossRefPubMedGoogle Scholar
  57. Machado LL, Monte FJQ, de Oliveira M, da CF, de Mattos MC, Lemos TLG, Gotor-Fernández V, Gotor V (2008) Bioreduction of aromatic aldehydes and ketones by fruits’ barks of Passiflora edulis. J Mol Catal B Enzym 54(3–4):130–133.  https://doi.org/10.1016/j.molcatb.2007.12.008CrossRefGoogle Scholar
  58. Masteikova R, Bernatoniene J, Bernatoniene R, Velziene S (2008) Antiradical activities of the extract of Passiflora incarnata. Acta Pol Pharm 65(5):577–583. Accessed from http://www.ncbi.nlm.nih.gov/pubmed/19051605PubMedGoogle Scholar
  59. Miroddi M, Calapai G, Navarra M, Minciullo PL, Gangemi S (2013) Passiflora incarnata L.: Ethnopharmacology, clinical application, safety and evaluation of clinical trials. J Ethnopharmacol 150(3):791–804.  https://doi.org/10.1016/j.jep.2013.09.047CrossRefPubMedGoogle Scholar
  60. Montefusco-Pereira CV, de Carvalho MJ, de Araújo Boleti AP, Teixeira LS, Matos HR, Lima ES (2013) Antioxidant, anti-inflammatory, and hypoglycemic effects of the leaf extract from Passiflora nitida Kunth. Appl Biochem Biotechnol 170(6):1367–1378.  https://doi.org/10.1007/s12010-013-0271-6CrossRefPubMedGoogle Scholar
  61. Moo-Huchin VM, Moo-Huchin MI, Estrada-León RJ, Cuevas-Glory L, Estrada-Mota IA, Ortiz-Vázquez E, Sauri-Duch E (2015) Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chem 166:17–22.  https://doi.org/10.1016/j.foodchem.2014.05.127CrossRefPubMedGoogle Scholar
  62. Muhammad N, Saeed M, Khan H (2012) Antipyretic, analgesic and anti-inflammatory activity of Viola betonicifolia whole plant. BMC Complement Altern Med 12(1):1056.  https://doi.org/10.1186/1472-6882-12-59CrossRefGoogle Scholar
  63. Nwosu M (1999) Herbs for mental disorders. Fitoterapia 70(1):58–63.  https://doi.org/10.1016/S0367-326X(98)00024-0CrossRefGoogle Scholar
  64. Obreja O, Rathee PK, Lips KS, Distler C, Kress M (2002) IL-1beta potentiates heat-activated currents in rat sensory neurons: involvement of IL-1RI, tyrosine kinase, and protein kinase C. FASEB J 16(12):1497–1503.  https://doi.org/10.1096/fj.02-0101comCrossRefPubMedGoogle Scholar
  65. Oga S, de Freitas P, da Silva A, Hanada S (1984) Pharmacological trials of crude extract of Passiflora alata. Planta Med 50(4):303–306.  https://doi.org/10.1055/s-2007-969715CrossRefPubMedGoogle Scholar
  66. Olafsdottir ES, Thorgeirsdottir E, Jaroszewski JW (1997) Isolation and identification of cyclopentene cyanohydrin bis-glycosides from three passiflora species. Eur J Pharm Sci 5(Supplement 1):S46. Elsevier B.V. Accessed from https://www.infona.pl/resource/bwmeta1.element.elsevier-cc8efa7b-bb40-32c4-8f9c-cac9e77d2165Google Scholar
  67. Olajide OA, Makinde JM, Awe SO (1999) Effects of the aqueous extract of Bridelia ferruginea stem bark on carrageenan-induced oedema and granuloma tissue formation in rats and mice. J Ethnopharmacol 66(1):113–117.  https://doi.org/10.1016/S0378-8741(99)00006-9CrossRefPubMedGoogle Scholar
  68. Oliveira DA, Angonese M, Gomes C, Ferreira SRS (2016) Valorization of passion fruit (Passiflora edulis sp.) by-products: sustainable recovery and biological activities. J Supercrit Fluids 111:55–62.  https://doi.org/10.1016/j.supflu.2016.01.010CrossRefGoogle Scholar
  69. Oteiza PI, Erlejman AG, Verstraeten SV, Keen CL, Fraga CG (2005) Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? Clin Dev Immunol 12(1):19–25.  https://doi.org/10.1080/10446670410001722168CrossRefPubMedPubMedCentralGoogle Scholar
  70. Pelegrini PB, Noronha EF, Muniz MAR, Vasconcelos IM, Chiarello MD, Oliveira JTA, Franco OL (2006) An antifungal peptide from passion fruit (Passiflora edulis) seeds with similarities to 2S albumin proteins. Biochim Biophys Acta 1764(6):1141–1146.  https://doi.org/10.1016/j.bbapap.2006.04.010CrossRefPubMedGoogle Scholar
  71. Pereira D, Corrêa RX, de Oliveira AC (2015) Molecular genetic diversity and differentiation of populations of “somnus” passion fruit trees (Passiflora setacea DC): implications for conservation and pre-breeding. Biochem Syst Ecol 59:12–21.  https://doi.org/10.1016/j.bse.2014.12.020CrossRefGoogle Scholar
  72. Petry RD, Reginatto F, De-Paris F, Gosmann G, Salgueiro JB, Quevedo J et al (2001) Comparative pharmacological study of hydroethanol extracts of Passiflora alata and Passiflora edulis leaves. Phytother Res 15(2):162–164.  https://doi.org/10.1002/ptr.694CrossRefPubMedGoogle Scholar
  73. Peuchant E, Brun J-L, Rigalleau V, Dubourg L, Thomas M-J, Daniel J-Y, Gin H (2004) Oxidative and antioxidative status in pregnant women with either gestational or type 1 diabetes. Clin Biochem 37(4):293–298.  https://doi.org/10.1016/j.clinbiochem.2003.12.005CrossRefPubMedGoogle Scholar
  74. Pongpan N, Luanratana O, Suntornsuk L (2007) Rapid reversed-phase high performance liquid chromatography for vitexin analysis and fingerprint of Passiflora foetida. Curr Sci 93(3):378–382.  https://doi.org/10.2307/24099471CrossRefGoogle Scholar
  75. Pontes M, Marques JC, Câmara JS (2009) Headspace solid-phase microextraction-gas chromatography-quadrupole mass spectrometric methodology for the establishment of the volatile composition of Passiflora fruit species. Microchem J 93:1–11.  https://doi.org/10.1016/j.microc.2009.03.010CrossRefGoogle Scholar
  76. Porto-Figueira P, Freitas A, Cruz CJ, Figueira J, Câmara JS (2015) Profiling of passion fruit volatiles: an effective tool to discriminate between species and varieties. Food Res Int 77:408–418.  https://doi.org/10.1016/j.foodres.2015.09.007CrossRefGoogle Scholar
  77. Puupponen-Pimia R, Nohynek L, Meier C, Kahkonen M, Heinonen M, Hopia A, Oksman-Caldentey K-M (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 90(4):494–507.  https://doi.org/10.1046/j.1365-2672.2001.01271.xCrossRefPubMedGoogle Scholar
  78. Ramaiya SD, Bujang JS, Zakaria MH (2014) Assessment of total phenolic, antioxidant, and antibacterial activities of Passiflora species. Sci World J 2014:1–10.  https://doi.org/10.1155/2014/167309CrossRefGoogle Scholar
  79. Raquibul Hasan SM, Hossain MM, Akter R, Jamila M, Mazumder MEH, Alam MA, Rahman S (2010) Analgesic activity of the different fractions of the aerial parts of Commelina benghalensis Linn. Int J Pharmacol 6(1):63–67.  https://doi.org/10.3923/ijp.2010.63.67CrossRefGoogle Scholar
  80. Ratheesh Narayanan MK, Anil Kumar N (2007) Gendered knowledge and changing trends in utilization of wild edible greens in Western Ghats, India. Ind J Tradition Knowl 6(1):204–216. http://nopr.niscair.res.in/bitstream/123456789/908/1/IJTK 6%281%29 %282007%29 204-216.pdfGoogle Scholar
  81. Rendle AB (1959) The classification of flowering plants. Cambridge University Press, Cambridge. https://books.google.com.br/books?id=Fuo8AAAAIAAJ&printsec=frontcover#v=onepage&q&f=falseGoogle Scholar
  82. Ribeiro SM, Almeida RG, Pereira CAA, Moreira JS, Pinto MFS, Oliveira AC, Franco OL (2011) Identification of a Passiflora alata Curtis dimeric peptide showing identity with 2S albumins. Peptides 32(5):868–874.  https://doi.org/10.1016/j.peptides.2010.10.011CrossRefPubMedGoogle Scholar
  83. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57(6):929–967.  https://doi.org/10.1016/S0031-9422(01)00113-3CrossRefPubMedGoogle Scholar
  84. Rudnicki M, de Oliveira MR, da Veiga Pereira T, Reginatto FH, Dal-Pizzol F, Fonseca Moreira JC (2007) Antioxidant and antiglycation properties of Passiflora alata and Passiflora edulis extracts. Food Chem 100(2):719–724.  https://doi.org/10.1016/j.foodchem.2005.10.043CrossRefGoogle Scholar
  85. Salave AP (2012) Some less known herbal remedies against cut and wounds from Ahmednagar areas in Maharashtra, India. Int J Basic Appl Sci 1(3):184–197.  https://doi.org/10.14419/ijbas.v1i3.63Google Scholar
  86. Saravanan S, Parimelazhagan T (2013) Total phenolic content, free radical scavenging and antimicrobial activities of Passiflora subpeltata seeds. J Appl Pharmaceut Sci 3(4):67–72.  https://doi.org/10.7324/JAPS.2013.3412CrossRefGoogle Scholar
  87. Saravanan S, Parimelazhagan T (2014) In vitro antioxidant, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss. fruit pulp. Food Sci Human Wellness 3(2):56–64.  https://doi.org/10.1016/j.fshw.2014.05.001CrossRefGoogle Scholar
  88. Saravanan S, Arunachalam K, Parimelazhagan T (2014) Antioxidant, analgesic, anti-inflammatory and antipyretic effects of polyphenols from Passiflora subpeltata leaves—A promising species of Passiflora. Ind Crop Prod 54:272–280.  https://doi.org/10.1016/j.indcrop.2014.01.038CrossRefGoogle Scholar
  89. Sasikala V, Saravana S, Parimelazhagan T (2011a) Evaluation of antioxidant potential of different parts of wild edible plant Passiflora foetida L. J Appl Pharmaceut Sci 1(4):89–96. Accessed from http://pesquisa.bvsalud.org/ghl/resource/pt/oai-imsear.hellis.org-123456789-150792Google Scholar
  90. Sasikala V, Saravanan S, Parimelazhagan T (2011b) Analgesic and anti–inflammatory activities of Passiflora foetida L. Asian Pac J Trop Med 4(8):600–603.  https://doi.org/10.1016/S1995-7645(11)60155-7CrossRefPubMedGoogle Scholar
  91. Sengar N, Joshi A, Prasad SK, Hemalatha S (2015) Anti-inflammatory, analgesic and anti-pyretic activities of standardized root extract of Jasminum sambac. J Ethnopharmacol 160:140–148.  https://doi.org/10.1016/j.jep.2014.11.039CrossRefPubMedGoogle Scholar
  92. Shanmugam S, Murugaiyan I, dos Santos Lima B, Serafini MR, de Souza Araújo AA, Narain N, Thangaraj P (2016a) HPLC–DAD–MS identification of polyphenols from Passiflora leschenaultii and determination of their antioxidant, analgesic, anti-inflammatory and antipyretic properties. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2016.02.008CrossRefGoogle Scholar
  93. Shanmugam S, Thangaraj P, Lima BDS, Chandran R, de Souza Araújo AA, Narain N, Júnior LJQ (2016b) Effects of luteolin and quercetin 3-β-d-glucoside identified from Passiflora subpeltata leaves against acetaminophen induced hepatotoxicity in rats. Biomed Pharmacother 83:1278–1285.  https://doi.org/10.1016/j.biopha.2016.08.044CrossRefPubMedGoogle Scholar
  94. Shukla S, Mehta A, Mehta P, Vyas SP, Shukla S, Bajpai VK (2010) Studies on anti-inflammatory, antipyretic and analgesic properties of Caesalpinia bonducella F. seed oil in experimental animal models. Food Chem Toxicol 48:61–64CrossRefGoogle Scholar
  95. Siebra ALA, Oliveira LR, Martins AOBPB, Siebra DC, Albuquerque RS, Lemos ICS, Kerntopf MR (2018) Potentiation of antibiotic activity by Passiflora cincinnata Mast. front of strains Staphylococcus aureus and Escherichia coli. Saudi J Biol Sci 25(1):37–43.  https://doi.org/10.1016/j.sjbs.2016.01.019CrossRefPubMedGoogle Scholar
  96. Soulimani R, Younos C, Jarmouni S, Bousta D, Misslin R, Mortier F (1997) Behavioural effects of Passiflora incarnata L. and its indole alkaloid and flavonoid derivatives and maltol in the mouse. J Ethnopharmacol 57(1):11–20.  https://doi.org/10.1016/S0378-8741(97)00042-1CrossRefPubMedGoogle Scholar
  97. Speroni E, Minghetti A (1988) Neuropharmacological activity of extracts from Passiflora incarnata. Planta Med 54(6):488–491.  https://doi.org/10.1055/s-2006-962525CrossRefPubMedGoogle Scholar
  98. Steer P, Millgård J, Sarabi DM, Basu S, Vessby B, Kahan T, Lind L (2002) Cardiac and vascular structure and function are related to lipid peroxidation and metabolism. Lipids 37(3):231–236.  https://doi.org/10.1007/s11745-002-0885-3CrossRefPubMedGoogle Scholar
  99. Taylor L (1996) Maracuja, herbal secrets of the rainforest. Prime Publishing Inc, Austin, TXGoogle Scholar
  100. Uchida K (2000) Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med 28(12):1685–1696.  https://doi.org/10.1016/S0891-5849(00)00226-4CrossRefPubMedGoogle Scholar
  101. Ueatrongchit T, Tamura K, Ohmiya T, H-Kittikun A, Asano Y (2010) Hydroxynitrile lyase from Passiflora edulis: purification, characteristics and application in asymmetric synthesis of (R)-mandelonitrile. Enzym Microb Technol 46(6):456–465.  https://doi.org/10.1016/j.enzmictec.2010.02.008CrossRefGoogle Scholar
  102. Ulmer T, MacDougal JM (2004) Passiflora: passionflowers of the world. Timber Press, PortlandGoogle Scholar
  103. Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46(10):4113–4117.  https://doi.org/10.1021/JF9801973CrossRefGoogle Scholar
  104. Voragen FGJ, Timmers JPJ, Linssen JPH, Schols HA, Pilnik W (1983) Methods of analysis for cell-wall polysaccharides of fruit and vegetables. Zeitschrift Fr Lebensmittel-Untersuchung Und-Forschung 177(4):251–256.  https://doi.org/10.1007/BF01082488CrossRefGoogle Scholar
  105. Watt JM, Breyer-Brandwijk MG (1962) The medicinal and poisonous plants of Southern and Eastern Africa. Edinburg, LivingstonGoogle Scholar
  106. Williamson EM, Okpako DT, Evans FJ (1996) Selection, preparation, and pharmacological evaluation of plant material. Wiley, Hoboken, NJGoogle Scholar
  107. Wootton-Beard PC, Ryan L (2011) Improving public health?: the role of antioxidant-rich fruit and vegetable beverages. Food Res Int 44(10):3135–3148.  https://doi.org/10.1016/j.foodres.2011.09.015CrossRefGoogle Scholar
  108. Wosch L, Imig DC, Cervi AC, Moura BB, Budel JM, de Moraes Santos CA et al (2015) Comparative study of Passiflora taxa leaves: I. A morpho-anatomic profile. Rev Bras 25(4):328–343.  https://doi.org/10.1016/j.bjp.2015.06.004CrossRefGoogle Scholar
  109. Xu F, Wang C, Yang L, Luo H, Fan W, Zi C, Zhou J (2013) C-dideoxyhexosyl flavones from the stems and leaves of Passiflora edulis Sims. Food Chem 136(1):94–99.  https://doi.org/10.1016/j.foodchem.2012.07.101CrossRefPubMedGoogle Scholar
  110. Xu F-Q, Wang N, Fan W-W, Zi C-T, Zhao H-S, Hu J-M, Zhou J (2016) Protective effects of cycloartane triterpenoides from Passiflora edulis Sims against glutamate-induced neurotoxicity in PC12 cell. Fitoterapia 115:122–127.  https://doi.org/10.1016/j.fitote.2016.09.013CrossRefPubMedGoogle Scholar
  111. Zeraik ML, Yariwake JH (2010) Quantification of isoorientin and total flavonoids in Passiflora edulis fruit pulp by HPLC-UV/DAD. Microchem J 96(1):86–91.  https://doi.org/10.1016/j.microc.2010.02.003CrossRefGoogle Scholar
  112. Zeraik ML, Serteyn D, Deby-Dupont G, Wauters J-N, Tits M, Yariwake JH, Franck T (2011) Evaluation of the antioxidant activity of passion fruit (Passiflora edulis and Passiflora alata) extracts on stimulated neutrophils and myeloperoxidase activity assays. Food Chem 128(2):259–265.  https://doi.org/10.1016/j.foodchem.2011.03.001CrossRefPubMedGoogle Scholar
  113. Zilly A, da Silva Coelho-Moreira J, Bracht A, Marques de Souza CG, Carvajal AE, Koehnlein EA, Peralta RM (2011) Influence of NaCl and Na2SO4 on the kinetics and dye decolorization ability of crude laccase from Ganoderma lucidum. Int Biodeterior Biodegradation 65(2):340–344.  https://doi.org/10.1016/j.ibiod.2010.12.007CrossRefGoogle Scholar
  114. Zucolotto SM, Fagundes C, Reginatto FH, Ramos FA, Castellanos L, Duque C, Schenkel EP (2012) Analysis of C-glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS. Phytochem Anal 23(3):232–239.  https://doi.org/10.1002/pca.1348CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Narendra Narain
    • 1
  • Saravanan Shanmugam
    • 2
  • Adriano Antunes de Souza Araújo
    • 2
  1. 1.Laboratory of Flavor and Chromatographic AnalysisFederal University of SergipeSao CristovaoBrazil
  2. 2.Department of PharmacyFederal University of SergipeSao CristovaoBrazil

Personalised recommendations