Computational Methodologies for Exploring Nano-engineered Materials

  • Ariela Vergara-JaqueEmail author
  • Matías Zúñiga
  • Horacio PobleteEmail author


Biomimetic nano-engineered materials have emerged as new potential additives for biomedical therapies. However, one of the most critical challenges that remain is the ability to produce responsive nanostructures that respond to external stimuli, enhance existing properties, and introduce new functionalities. In this regard, the use of computational methodologies to design, simulate, and visualize the interaction between biological substrates and nanostructures provides a powerful tool for better understanding structure/function. This chapter focuses on the use of molecular modeling and molecular dynamics (MD) methods to assist the design of bio-nanomaterials and characterize the structural aspects of the interaction between nanostructures and biological molecules. Computational simulations allow the analysis of the behavior of atoms and molecules for a period of time employing integrated mathematical and physical equations. Here, we describe how these theoretical methods are used to design and model nanomaterials in a rational way, as well as to evaluate its functionalization and association with drug-like compounds. Methodologies used in the field of computational nanotechnology include de novo modeling, parametrization, molecular dynamics simulations under functional conditions, binding free energy calculations, as well as future perspectives oriented to use reactive force field techniques.



Authors thank FONDECYT grant no. 1171155 and 11170223 as well as Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD); a Millennium Nucleus supported by the Iniciativa Cientifica Milenio of the Ministry of Economy, Development and Tourism (Chile).


All authors have read and approved this final version.


  1. 1.
    Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2(5):347–60.CrossRefGoogle Scholar
  2. 2.
    Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76.CrossRefGoogle Scholar
  3. 3.
    Huh Y-M, Jun Y-w, Song H-T, Kim S, Choi J-s, Lee J-H, Yoon S, Kim K-S, Shin J-S, Suh J-S and others. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc. 2005;127(35):12387–91.CrossRefGoogle Scholar
  4. 4.
    Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436(7050):568–72.CrossRefGoogle Scholar
  5. 5.
    Popovic N, Brundin P. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int J Pharm. 2006;314(2):120–6.CrossRefGoogle Scholar
  6. 6.
    Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc. 2016;11:1775.CrossRefGoogle Scholar
  7. 7.
    Verma S, Domb AJ, Kumar N. Nanomaterials for regenerative medicine. Nanomedicine. 2010;6(1):157–81.CrossRefGoogle Scholar
  8. 8.
    Merkle RC. Computational nanotechnology. Nanotechnology. 1991;2:134–41.CrossRefGoogle Scholar
  9. 9.
    Tetley TD. Health effects of nanomaterials. Biochem Soc Trans. 2007;35(Pt 3):527–31.CrossRefGoogle Scholar
  10. 10.
    Saini B, Srivastava S. Nanoinformatics: predicting toxicity using computational modeling. Comput Intell Big Data Anal. 2018. pp. 65–73.Google Scholar
  11. 11.
    Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Ann Rev Biomed Eng. 2012;14:1–16.CrossRefGoogle Scholar
  12. 12.
    Bora T, Dousse A, Sharma K, Sarma K, Baev A, Hornyak GL, Dasgupta G. Modeling nanomaterial physical properties: theory and simulation. Int J Smart Nano Mater. 2019;10(2):116–43.CrossRefGoogle Scholar
  13. 13.
    Lamon L, Asturiol D, Vilchez A, Ruperez-Illescas R, Cabellos J, Richarz A, Worth A. Computational models for the assessment of manufactured nanomaterials: development of model reporting standards and mapping of the model landscape. Comput Toxicol. 2019;9:143–51.CrossRefGoogle Scholar
  14. 14.
    Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.CrossRefGoogle Scholar
  15. 15.
    Barenholz Y. Doxil®–the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.CrossRefGoogle Scholar
  16. 16.
    Yacoub Tyrone J, Reddy Allam S, Szleifer I. Structural effects and translocation of doxorubicin in a DPPC/Chol bilayer: the role of cholesterol. Biophys J. 2011;101(2):378–85.CrossRefGoogle Scholar
  17. 17.
    Xiang T-X, Jiang Z-Q, Song L, Anderson BD. Molecular dynamics simulations and experimental studies of binding and mobility of 7-tert-butyldimethylsilyl-10-hydroxycamptothecin and its 20(S)-4-aminobutyrate ester in DMPC membranes. Mol Pharm. 2006;3(5):589–600.CrossRefGoogle Scholar
  18. 18.
    Xiang T-X, Anderson BD. Liposomal drug transport: a molecular perspective from molecular dynamics simulations in lipid bilayers. Adv Drug Deliv Rev. 2006;58(12–13):1357–78.CrossRefGoogle Scholar
  19. 19.
    Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernández S, de la Fuente JM, Nienhaus GU, Parak WJ. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano. 2015;9(7):6996–7008.CrossRefGoogle Scholar
  20. 20.
    Shen Z, Loe DT, Awino JK, Kröger M, Rouge JL, Li Y. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles. Nanoscale. 2016;8(31):14821–35.CrossRefGoogle Scholar
  21. 21.
    Haume K, Mason NJ, Solov’yov AV. Modeling of nanoparticle coatings for medical applications. Eur Phys J D. 2016;70(9):181.Google Scholar
  22. 22.
    Marasini R, Pitchaimani A, Nguyen TDT, Comer J, Aryal S. The influence of polyethylene glycol passivation on the surface plasmon resonance induced photothermal properties of gold nanorods. Nanoscale. 2018;10(28):13684–93.CrossRefGoogle Scholar
  23. 23.
    Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M and others. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45(5):1457–1501.CrossRefGoogle Scholar
  24. 24.
    Vergara-Jaque A, Comer J, Monsalve L, González-Nilo FD, Sandoval C. Computationally Efficient methodology for atomic-level characterization of dendrimer-drug complexes: a comparison of amine- and acetyl-terminated PAMAM. J Phys Chem B. 2013;117(22):6801–13.CrossRefGoogle Scholar
  25. 25.
    Khalilov U, Bogaerts A, Neyts EC. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors. Nat Commun. 2015;6:10306.CrossRefGoogle Scholar
  26. 26.
    Shimizu K, Nakamura H, Watano S. MD simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field. Nanoscale. 2016;8(23):11897–906.CrossRefGoogle Scholar
  27. 27.
    Krüger DM, Kamerlin SCL. Micelle maker: an online tool for generating equilibrated micelles as direct input for molecular dynamics simulations. ACS Omega. 2017;2(8):4524–30.CrossRefGoogle Scholar
  28. 28.
    Chu Z, Han Y, Bian T, De S, Král P, Klajn R. Supramolecular control of azobenzene switching on nanoparticles. J Am Chem Soc. 2019;141(5):1949–60.CrossRefGoogle Scholar
  29. 29.
    Ding H-m, Ma Y-q. Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Sci Rep. 2013;3:2804.CrossRefGoogle Scholar
  30. 30.
    von Maltzahn G, Park J-H, Lin KY, Singh N, Schwöppe C, Mesters R, Berdel WE, Ruoslahti E, Sailor MJ, Bhatia SN. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater. 2011;10(7):545–52.CrossRefGoogle Scholar
  31. 31.
    Llopis-Lorente A, Díez P, Sánchez A, Marcos MD, Sancenón F, Martínez-Ruiz P, Villalonga R, Martínez-Máñez R. Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nat Comm. 2017;8:15511.CrossRefGoogle Scholar
  32. 32.
    Saini B, Srivastava S. Nanoinformatics: Predicting Toxicity Using Computational Modeling. In: Satyanarayana C, Rao KN, Bush RG, editors. Computational intelligence and big data analytics: applications in bioinformatics. Singapore: Springer; 2019. p. 65–73.CrossRefGoogle Scholar
  33. 33.
    Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q. Protein corona-mediated mitigation of cytotoxicity of Graphene Oxide. ACS Nano. 2011;5(5):3693–700.CrossRefGoogle Scholar
  34. 34.
    Baweja L, Balamurugan K, Subramanian V, Dhawan A. Hydration patterns of Graphene-Based Nanomaterials (GBNMs) play a major role in the stability of a helical protein: a molecular dynamics simulation study. Langmuir. 2013;29(46):14230–8.CrossRefGoogle Scholar
  35. 35.
    Comer J, Chen R, Poblete H, Vergara-Jaque A, Riviere JE. Predicting adsorption affinities of small molecules on carbon nanotubes using molecular dynamics simulation. ACS Nano. 2015;9(12):11761–74.CrossRefGoogle Scholar
  36. 36.
    Slocik JM, Naik RR. Probing peptide-nanomaterial interactions. Chem Soc Rev. 2010;39(9):3454–63.CrossRefGoogle Scholar
  37. 37.
    Poblete H, Agarwal A, Thomas SS, Bohne C, Ravichandran R, Phopase J, Comer J, Alarcon EI. New Insights into peptide-silver nanoparticle interaction: deciphering the role of cysteine and lysine in the peptide sequence. Langmuir. 2016;32(1):265–73.CrossRefGoogle Scholar
  38. 38.
    Heinz H, Farmer BL, Pandey RB, Slocik JM, Patnaik SS, Pachter R, Naik RR. Nature of molecular interactions of Peptides with Gold, Palladium, and Pd−Au bimetal surfaces in aqueous solution. J Am Chem Soc. 2009;131(28):9704–14.CrossRefGoogle Scholar
  39. 39.
    Coppage R, Slocik JM, Briggs BD, Frenkel AI, Heinz H, Naik RR, Knecht MR. Crystallographic recognition controls peptide binding for bio-based nanomaterials. J Am Chem Soc. 2011;133(32):12346–9.CrossRefGoogle Scholar
  40. 40.
    Heinz H, Lin T-J, Kishore Mishra R, Emami FS. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir. 2013;29(6):1754–65.CrossRefGoogle Scholar
  41. 41.
    Katoch J, Kim SN, Kuang Z, Farmer BL, Naik RR, Tatulian SA, Ishigami M. Structure of a peptide adsorbed on Graphene and Graphite. Nano Lett. 2012;12(5):2342–6.CrossRefGoogle Scholar
  42. 42.
    Caballero J, Poblete H, Navarro C, Alzate-Morales JH. Association of nicotinic acid with a poly(amidoamine) dendrimer studied by molecular dynamics simulations. J Mol Graph Model. 2013;39:71–8.CrossRefGoogle Scholar
  43. 43.
    Maingi V, Kumar MVS, Maiti PK. PAMAM dendrimer-drug interactions: Effect of pH on the binding and release pattern. J Phys Chem B. 2012;116(14):4370–6.CrossRefGoogle Scholar
  44. 44.
    Carrasco-Sánchez V, Vergara-Jaque A, Zuñiga M, Comer J, John A, Nachtigall FM, Valdes O, Duran-Lara EF, Sandoval C, Santos LS. In situ and in silico evaluation of amine- and folate-terminated dendrimers as nanocarriers of anesthetics. Eur J Med Chem. 2014;73:250–7.CrossRefGoogle Scholar
  45. 45.
    Sun C, Tang T, Uludag H. A molecular dynamics simulation study on the effect of lipid substitution on polyethylenimine mediated siRNA complexation. Biomaterials. 2013;34(11):2822–33.CrossRefGoogle Scholar
  46. 46.
    Vilos C, Morales FA, Solar PA, Herrera NS, Gonzalez-Nilo FD, Aguayo DA, Mendoza HL, Comer J, Bravo ML, Gonzalez PA and others. Paclitaxel-PHBV nanoparticles and their toxicity to endometrial and primary ovarian cancer cells. Biomaterials. 2013;34(16):4098–4108.CrossRefGoogle Scholar
  47. 47.
    Azhagiya Singam ER, Zhang Y, Magnin G, Miranda-Carvajal I, Coates L, Thakkar R, Poblete H, Comer J. Thermodynamics of adsorption on graphenic surfaces from aqueous solution. J Chem Theory Comput. 2019;15(2):1302–16.CrossRefGoogle Scholar
  48. 48.
    Hughes ZE, Tomásio SM, Walsh TR. Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable model. Nanoscale. 2014;6(10):5438–48.CrossRefGoogle Scholar
  49. 49.
    Robertson AW, Warner JH. Atomic resolution imaging of graphene by transmission electron microscopy. Nanoscale. 2013;5(10):4079–93.CrossRefGoogle Scholar
  50. 50.
    Li Y, Tian Y, Zheng W, Feng Y, Huang R, Shao J, Tang R, Wang P, Jia Y, Zhang J and others. Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating gram-negative bacteria-infected wounds. Small 2017;13(27):1700130.CrossRefGoogle Scholar
  51. 51.
    Lei Y, Tang L, Xie Y, Xianyu Y, Zhang L, Wang P, Hamada Y, Jiang K, Zheng W, Jiang X. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat Commun. 2017;8:15130.CrossRefGoogle Scholar
  52. 52.
    Deyev S, Proshkina G, Ryabova A, Tavanti F, Menziani MC, Eidelshtein G, Avishai G, Kotlyar A. Synthesis, characterization, and selective delivery of DARPin–Gold nanoparticle conjugates to cancer cells. Bioconjugate Chem. 2017;28(10):2569–74.CrossRefGoogle Scholar
  53. 53.
    Lim E-K, Kim T, Paik S, Haam S, Huh Y-M, Lee K. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev. 2015;115(1):327–94.CrossRefGoogle Scholar
  54. 54.
    Charchar P, Christofferson AJ, Todorova N, Yarovsky I. Understanding and designing the gold-bio interface: insights from simulations. Small. 2016;12(18):2395–418.CrossRefGoogle Scholar
  55. 55.
    Park J-W, Shumaker-Parry JS. Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. J Am Chem Soc. 2014;136(5):1907–21.CrossRefGoogle Scholar
  56. 56.
    Iori F, Di Felice R, Molinari E, Corni S. GolP: an atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water. J Comput Chem. 2009;30(9):1465–76.CrossRefGoogle Scholar
  57. 57.
    Hoefling M, Iori F, Corni S, Gottschalk K-E. Interaction of Amino Acids with the Au(111) surface: adsorption free energies from molecular dynamics simulations. Langmuir. 2010;26(11):8347–51.CrossRefGoogle Scholar
  58. 58.
    Hoefling M, Monti S, Corni S, Gottschalk KE. Interaction of β-sheet folds with a gold surface. PLoS ONE. 2011;6(6):e20925.CrossRefGoogle Scholar
  59. 59.
    Tang M, Gandhi NS, Burrage K, Gu Y. Interaction of gold nanosurfaces/nanoparticles with collagen-like peptides. Phys Chem Chem Phys. 2019;21(7):3701–11.CrossRefGoogle Scholar
  60. 60.
    Camarada MB, Comer J, Poblete H, Azhagiya Singam ER, Marquez-Miranda V, Morales-Verdejo C, Gonzalez-Nilo FD. Experimental and computational characterization of the interaction between gold nanoparticles and polyamidoamine dendrimers. Langmuir. 2018;34(34):10063–72.CrossRefGoogle Scholar
  61. 61.
    Iori F, Corni S. Including image charge effects in the molecular dynamics simulations of molecules on metal surfaces. J Comput Chem. 2008;29(10):1656–66.CrossRefGoogle Scholar
  62. 62.
    Chen D-L, Al-Saidi WA, Johnson JK. Noble gases on metal surfaces: insights on adsorption site preference. Phys Rev B. 2011;84(24):241405.CrossRefGoogle Scholar
  63. 63.
    Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118(45):11225–36.CrossRefGoogle Scholar
  64. 64.
    Cicero G, Calzolari A, Corni S, Catellani A. Anomalous wetting layer at the Au(111) surface. J Phys Chem Lett. 2011;2(20):2582–6.CrossRefGoogle Scholar
  65. 65.
    MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S and others. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998;102(18):3586–3616.Google Scholar
  66. 66.
    Wright LB, Rodger PM, Walsh TR, Corni S. First-principles-based force field for the interaction of proteins with Au(100)(5 × 1): an extension of GolP-CHARMM. J Phys Chem C. 2013;117(46):24292–306.CrossRefGoogle Scholar
  67. 67.
    Wright LB, Rodger PM, Corni S, Walsh TR. GolP-CHARMM: first-principles based force fields for the interaction of proteins with Au(111) and Au(100). J Chem Theory Comput. 2013;9(3):1616–30.CrossRefGoogle Scholar
  68. 68.
    Perfilieva OA, Pyshnyi DV, Lomzov AA. Molecular dynamics simulation of polarizable gold nanoparticles interacting with Sodium Citrate. J Chem Theory Comput. 2019;15(2):1278–92.CrossRefGoogle Scholar
  69. 69.
    Hughes ZE, Wright LB, Walsh TR. Biomolecular adsorption at aqueous silver interfaces: first-principles calculations, polarizable force-field simulations, and comparisons with Gold. Langmuir. 2013;29(43):13217–29.CrossRefGoogle Scholar
  70. 70.
    Alarcon EI, Udekwu KI, Noel CW, Gagnon LBP, Taylor PK, Vulesevic B, Simpson MJ, Gkotzis S, Islam MM, Lee C-J and others. Safety and efficacy of composite collagen–silver nanoparticle hydrogels as tissue engineering scaffolds. Nanoscale 2015;7(44):18789–98.CrossRefGoogle Scholar
  71. 71.
    Alarcon EI, Udekwu K, Skog M, Pacioni NL, Stamplecoskie KG, González-Béjar M, Polisetti N, Wickham A, Richter-Dahlfors A, Griffith M and others. The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 2012;33(19):4947–56.CrossRefGoogle Scholar
  72. 72.
    Hosoyama K, Ahumada M, McTiernan CD, Bejjani J, Variola F, Ruel M, Xu B, Liang W, Suuronen EJ, Alarcon EI. Multi-functional thermo-crosslinkable collagen-metal nanoparticle composites for tissue regeneration: nanosilver vs. nanogold. RSC Adv. 2017;7(75):47704–08.CrossRefGoogle Scholar
  73. 73.
    Lazurko C, Ahumada M, Valenzuela-Henríquez F, Alarcon EI. NANoPoLC algorithm for correcting nanoparticle concentration by sample polydispersity. Nanoscale. 2018;10(7):3166–70.CrossRefGoogle Scholar
  74. 74.
    Ahumada M, Lissi E, Montagut AM, Valenzuela-Henríquez F, Pacioni NL, Alarcon EI. Association models for binding of molecules to nanostructures. Analyst. 2017;142(12):2067–89.CrossRefGoogle Scholar
  75. 75.
    Ahumada M, Jacques E, Andronic C, Comer J, Poblete H, Alarcon EI. Novel specific peptides as superior surface stabilizers for silver nano structures: role of peptide chain length. J Mater Chem B. 2017;5(45):8925–8.CrossRefGoogle Scholar
  76. 76.
    Jacques E, Ahumada M, Rector B, Yousefalizadeh G, Galaz-Araya C, Recabarren R, Stamplecoskie K, Poblete H, Alarcon EI. Effect of nanosilver surfaces on peptide reactivity towards reactive oxygen species. Nanoscale. 2018;10(34):15911–7.CrossRefGoogle Scholar
  77. 77.
    Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, Jin H, Parker KK, Langer R, Kohane DS. Nanowired three-dimensional cardiac patches. Nat Nanotechnol. 2011;6(11):720–5.CrossRefGoogle Scholar
  78. 78.
    Goel K, Zuñiga-Bustos M, Lazurko C, Jacques E, Galaz-Araya C, Valenzuela-Henriquez F, Pacioni NL, Couture J-F, Poblete H, Alarcon EI. Nanoparticle concentration vs surface area in the interaction of thiol-containing molecules: toward a rational nanoarchitectural design of hybrid materials. ACS Appl Mater Inter. 2019;11(19):17697–705.CrossRefGoogle Scholar
  79. 79.
    Lemkul JA, Huang J, Roux B, MacKerell AD. An empirical polarizable force field based on the classical drude oscillator model: development history and recent applications. Chem Rev. 2016;116(9):4983–5013.CrossRefGoogle Scholar
  80. 80.
    Yanamala N, Kagan VE, Shvedova AA. Molecular modeling in structural nano-toxicology: Interactions of nano-particles with nano-machinery of cells. Adv Drug Deliv Rev. 2013;65(15):2070–7.CrossRefGoogle Scholar
  81. 81.
    Ozboyaci M, Kokh DB, Corni S, Wade RC. Modeling and simulation of protein–surface interactions: achievements and challenges. Q Rev Biophys 2016;49.Google Scholar
  82. 82.
    Yarovsky I, Hearn MTW, Aguilar MI. Molecular simulation of peptide interactions with an RP-HPLC sorbent. J Phys Chem B. 1997;101(50):10962–70.CrossRefGoogle Scholar
  83. 83.
    Noon WH, Kong Y, Ma J. Molecular dynamics analysis of a buckyball-antibody complex. PNAS. 2002;99(Suppl 2):6466–70.CrossRefGoogle Scholar
  84. 84.
    Gao H, Kong Y, Cui D, Ozkan CS. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 2003;3(4):471–3.CrossRefGoogle Scholar
  85. 85.
    Raffaini G, Ganazzoli F. Molecular dynamics simulation of the adsorption of a fibronectin module on a graphite surface . Langmuir. 2004;20(8):3371–8.CrossRefGoogle Scholar
  86. 86.
    Lu G, Maragakis P, Kaxiras E. Carbon Nanotube Interaction with DNA. Nano Lett. 2005;5(5):897–900.CrossRefGoogle Scholar
  87. 87.
    Johnson RR, Johnson ATC, Klein ML. Probing the structure of DNA–carbon nanotube hybrids with molecular dynamics. Nano Lett. 2008;8(1):69–75.CrossRefGoogle Scholar
  88. 88.
    Bedrov D, Smith GD, Davande H, Li L. Passive transport of C60 fullerenes through a lipid membrane: a molecular dynamics simulation study. J Phys Chem B. 2008;112(7):2078–84.CrossRefGoogle Scholar
  89. 89.
    Li Y, Chen X, Gu N. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J Phys Chem B. 2008;112(51):16647–53.CrossRefGoogle Scholar
  90. 90.
    Wang H, Michielssens S, Moors SLC, Ceulemans A. Molecular dynamics study of dipalmitoylphosphatidylcholine lipid layer self-assembly onto a single-walled carbon nanotube. Nano Res. 2009;2(12):945–54.CrossRefGoogle Scholar
  91. 91.
    Chiu C-C, Dieckmann GR, Nielsen SO. Role of peptide–peptide interactions in stabilizing peptide-wrapped single-walled carbon nanotubes: a molecular dynamics study. Peptide Sci 2009;92(3):156–163.CrossRefGoogle Scholar
  92. 92.
    Chiu C-C, Dieckmann GR, Nielsen SO. Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces. J Phys Chem B 2008;112(51):16326–33.CrossRefGoogle Scholar
  93. 93.
    Ngo VA, Kalia RK, Nakano A, Vashishta P. Supercrystals of DNA-functionalized gold nanoparticles: a million-atom molecular dynamics simulation study. J Phys Chem C. 2012;116(36):19579–85.CrossRefGoogle Scholar
  94. 94.
    Ramezani F, Habibi M, Rafii-Tabar H, Amanlou M. Effect of peptide length on the conjugation to the gold nanoparticle surface: a molecular dynamic study. DARU J Pharm Sci. 2015;23(1):9.CrossRefGoogle Scholar
  95. 95.
    Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314(1):141–51.CrossRefGoogle Scholar
  96. 96.
    Corni S, Hnilova M, Tamerler C, Sarikaya M. Conformational behavior of genetically-engineered Dodecapeptides as a determinant of binding affinity for Gold. J Phys Chem C. 2013;117(33):16990–7003.CrossRefGoogle Scholar
  97. 97.
    Li H, Luo Y, Derreumaux P, Wei G. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer’s Amyloid-β(16-22) peptide. Biophys J. 2011;101(9):2267–76.CrossRefGoogle Scholar
  98. 98.
    Liao C, Zhou J. Replica-exchange molecular dynamics simulation of basic fibroblast growth factor adsorption on hydroxyapatite. J Phys Chem B. 2014;118(22):5843–52.CrossRefGoogle Scholar
  99. 99.
    Hosseinzadeh G, Maghari A, Farnia SMF, Moosavi-Movahedi AA. Interaction mechanism of insulin with ZnO nanoparticles by replica exchange molecular dynamics simulation. J Biomol Struct Dyn. 2018;36(14):3623–35.CrossRefGoogle Scholar
  100. 100.
    Liu P, Kim B, Friesner RA, Berne BJ. Replica exchange with solute tempering: a method for sampling biological systems in explicit water. PNAS. 2005;102(39):13749–54.CrossRefGoogle Scholar
  101. 101.
    Tang Z, Palafox-Hernandez JP, Law W-C, Hughes ZE, Swihart MT, Prasad PN, Knecht MR, Walsh TR. Biomolecular recognition principles for bionanocombinatorics: an integrated approach to elucidate enthalpic and entropic factors. ACS Nano. 2013;7(11):9632–46.CrossRefGoogle Scholar
  102. 102.
    Song M, Sun Y, Luo Y, Zhu Y, Liu Y, Li H. Exploring the mechanism of inhibition of au nanoparticles on the aggregation of Amyloid-β(16-22) peptides at the atom level by all-atom molecular dynamics. Int J Mol Sci 2018;19(6).CrossRefGoogle Scholar
  103. 103.
    Xie L, Luo Y, Lin D, Xi W, Yang X, Wei G. The molecular mechanism of fullerene-inhibited aggregation of Alzheimer’s β-amyloid peptide fragment. Nanoscale. 2014;6(16):9752–62.CrossRefGoogle Scholar
  104. 104.
    Free Energy Calculations. Theory and applications in Chemistry and Biology. Berlin, Heidelberg: Springer; 2007.Google Scholar
  105. 105.
    Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J Comput Phys. 1977;23(2):187–99.CrossRefGoogle Scholar
  106. 106.
    Torrie GM, Valleau JP. Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chem Phys Lett. 1974;28(4):578–81.CrossRefGoogle Scholar
  107. 107.
    Laio A, Parrinello M. Escaping free-energy minima. PNAS. 2002;99(20):12562–6.CrossRefGoogle Scholar
  108. 108.
    Izrailev S, Stepaniants S, Balsera M, Oono Y, Schulten K. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J. 1997;72(4):1568–81.CrossRefGoogle Scholar
  109. 109.
    Darve E, Pohorille A. Calculating free energies using average force. J Chem Phys. 2001;115(20):9169–83.CrossRefGoogle Scholar
  110. 110.
    Lehn RCV, Alexander-Katz A. Energy landscape for the insertion of amphiphilic nanoparticles into lipid membranes: a computational study. PLoS ONE. 2019;14(1):e0209492.CrossRefGoogle Scholar
  111. 111.
    Nademi Y, Tang T, Uludağ H. Steered molecular dynamics simulations reveal a self-protecting configuration of nanoparticles during membrane penetration. Nanoscale. 2018;10(37):17671–82.CrossRefGoogle Scholar
  112. 112.
    Li Y, Gu N. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study. J Phys Chem B. 2010;114(8):2749–54.CrossRefGoogle Scholar
  113. 113.
    Ferreira AF, Comune M, Rai A, Ferreira L, Simões PN. Atomistic-level investigation of a LL37-conjugated gold nanoparticle by well-tempered metadynamics. J Phys Chem B. 2018;122(35):8359–66.CrossRefGoogle Scholar
  114. 114.
    Prakash A, Sprenger KG, Pfaendtner J. Essential slow degrees of freedom in protein-surface simulations: a metadynamics investigation. Biochem Biophys Res Commun. 2018;498(2):274–81.CrossRefGoogle Scholar
  115. 115.
    Zhang S, Liu Q, Cheng H, Gao F, Liu C, Teppen BJ. Thermodynamic mechanism and interfacial structure of kaolinite intercalation and surface modification by alkane surfactants with neutral and ionic head groups. J Phys Chem C Nanomater Interf. 2017;121(16):8824–31.CrossRefGoogle Scholar
  116. 116.
    Emami FS, Puddu V, Berry RJ, Varshney V, Patwardhan SV, Perry CC, Heinz H. Prediction of specific biomolecule adsorption on silica surfaces as a function of pH and particle size. Chem Mater. 2014;26(19):5725–34.CrossRefGoogle Scholar
  117. 117.
    Deighan M, Pfaendtner J. Exhaustively sampling peptide adsorption with metadynamics. Langmuir. 2013;29(25):7999–8009.CrossRefGoogle Scholar
  118. 118.
    Boughton AP, Andricioaei I, Chen Z. Surface orientation of Magainin 2: molecular dynamics simulation and sum frequency generation vibrational spectroscopic studies. Langmuir. 2010;26(20):16031–6.CrossRefGoogle Scholar
  119. 119.
    Lai C-T, Sun W, Palekar RU, Thaxton CS, Schatz GC. Molecular dynamics simulation and experimental studies of gold nanoparticle templated HDL-like nanoparticles for cholesterol metabolism therapeutics. ACS Appl Mater Interf. 2017;9(2):1247–54.CrossRefGoogle Scholar
  120. 120.
    Monti S, Barcaro G, Sementa L, Carravetta V, Ågren H. Dynamics and self-assembly of bio-functionalized gold nanoparticles in solution: Reactive molecular dynamics simulations. Nano Res. 2018;11(4):1757–67.CrossRefGoogle Scholar
  121. 121.
    Monti S, Barcaro G, Sementa L, Carravetta V, Ågren H. Characterization of the adsorption dynamics of trisodium citrate on gold in water solution. RSC Adv. 2017;7(78):49655–63.CrossRefGoogle Scholar
  122. 122.
    Monti S, Carravetta V, Ågren H. Decoration of gold nanoparticles with cysteine in solution: reactive molecular dynamics simulations. Nanoscale. 2016;8(26):12929–38.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Bioinformatics and Molecular Simulation, Universidad de TalcaTalcaChile
  2. 2.Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD)Universidad de TalcaTalcaChile

Personalised recommendations