Nanomaterials for Its Use in Biomedicine: An Overview

  • Caitlin Lazurko
  • Erik Jacques
  • Manuel Ahumada
  • Emilio I. AlarconEmail author


The rapid incorporation of nanostructures in regenerative medicine can be considered one of the biggest leaps in the production of novel materials for repair and regeneration of damaged tissues. However, despite a large number of articles published, clinical use of these materials is still in its infancy. The complexity and interdisciplinary nature of research aimed to repair damaged tissue and failing organs are the main limiting factors that have halted the progression for developing novel structures for tissue repair. In the present chapter, we revise fundamental concepts to be considered when designing technologies that will have to undergo scrutiny by regulatory agencies prior to being used in humans.



Dr. Alarcon thanks the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada (NSERC), the support of the Ministry of Economic Development, Job Creation and Trade for an Early Researcher Award, and the New Frontiers in Research Fund—Exploration for a research Grant. Ms. Lazurko thanks the Queen Elizabeth II Graduate Scholarships in Science and Technology for financial support. Dr. Ahumada thanks the CONICYT—FONDECYT (Iniciación en la Investigación) grant #11180616.


All authors have read and approved the final version.


  1. 1.
    Nanoscience and nanotechnologies: opportunities and uncertainties. London, UK: The Royal Society and The Royal Academy of Engineering; 2004.Google Scholar
  2. 2.
    Taniguchi N. On the basic concept of nanotechnology. In: Proceedings of the international conference on production engineering. Tokyo, Japan: Japan Society of Precision Engineering; 1974.Google Scholar
  3. 3.
    Goesmann H, Feldmann C. Nanoparticulate functional materials. Angew Chem. 2010;49(8):1362–95.CrossRefGoogle Scholar
  4. 4.
    Krukemeyer MGKV, Huebner F, Wagner W, Resch R. History and possible uses of nanomedicine based on nanoparticles and nanotechnological progress. J Nanomed Nanotechnol. 2015;6(6):336.Google Scholar
  5. 5.
    Stamplecoskie K. Silver nanoparticles: from bulk material to colloidal nanoparticles. In: Alarcon EI, Griffith M, Udekwu KI, editors. Silver nanoparticle applications: in the fabrication and design of medical and biosensing devices. Cham: Springer International Publishing; 2015. p. 1–12.Google Scholar
  6. 6.
    Ventola CL. The nanomedicine revolution: part 1: emerging concepts. P T. 2012;37(9):512–25.Google Scholar
  7. 7.
    Lehner R, Wang X, Marsch S, Hunziker P. Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomed Nanotechnol Biol Med. 2013;9(6):742–57.CrossRefGoogle Scholar
  8. 8.
    Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238-IN27.CrossRefGoogle Scholar
  9. 9.
    Wagner V, Dullaart A, Bock A-K, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24:1211.CrossRefGoogle Scholar
  10. 10.
    Sampogna G, Guraya SY, Forgione A. Regenerative medicine: historical roots and potential strategies in modern medicine. J Microsc Ultrastruct. 2015;3(3):101–7.CrossRefGoogle Scholar
  11. 11.
    Slingerland AS, Smits AIPM, Bouten CVC. Then and now: hypes and hopes of regenerative medicine. Trends Biotechnol. 2013;31(3):121–3.CrossRefGoogle Scholar
  12. 12.
    Kaul H, Ventikos Y. On the genealogy of tissue engineering and regenerative medicine. Tissue Eng Part B. 2015;21(2):203–17.CrossRefGoogle Scholar
  13. 13.
    Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2(1):403–30.CrossRefGoogle Scholar
  14. 14.
    Kemp P. History of regenerative medicine: looking backwards to move forwards. Regen Med. 2006;1(5):653–69.CrossRefGoogle Scholar
  15. 15.
    Lysaght MJ, Hazlehurst AL. Tissue engineering: the end of the beginning. Tissue Eng. 2014;383(9913):193–5.Google Scholar
  16. 16.
    Lysaght MJ, Jaklenec A, Deweerd E. Great expectations: private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics. Tissue Eng Part A. 2008;14(2):305–15.CrossRefGoogle Scholar
  17. 17.
    Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3(1):1–5.CrossRefGoogle Scholar
  18. 18.
    Chen C, Dubin R, Kim MC. Emerging trends and new developments in regenerative medicine: a scientometric update (2000–2014). Expert Opin Biol Ther. 2014;14(9):1295–317.CrossRefGoogle Scholar
  19. 19.
    Bhat S, Kumar A. Biomaterials and bioengineering tomorrow’s healthcare. Biomatter. 2013;3(3):e24717.CrossRefGoogle Scholar
  20. 20.
    De Jong WH, Borm PJA. Drug delivery and nanoparticles:applications and hazards. Int J Nanomed. 2008;3(2):133–49.CrossRefGoogle Scholar
  21. 21.
    Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev. 2014;114(12):6130–78.CrossRefGoogle Scholar
  22. 22.
    Bhushan B. Introduction to nanotechnology. In: Bhushan B, editor. Springer handbook of nanotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2017. p 1–19.CrossRefGoogle Scholar
  23. 23.
    Dreher KL. Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci. 2004;77(1):3–5.CrossRefGoogle Scholar
  24. 24.
    McLaughlin S, Ahumada M, Franco W, Mah TF, Seymour R, Suuronen EJ, Alarcon EI. Sprayable peptide-modified silver nanoparticles as a barrier against bacterial colonization. Nanoscale. 2016;8(46):19200–3.CrossRefGoogle Scholar
  25. 25.
    Lam C-W, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77(1):126–34.CrossRefGoogle Scholar
  26. 26.
    Ahumada M, Suuronen EJ, Alarcon EI. Biomolecule silver nanoparticle-based materials for biomedical applications. In: Martínez LMT, Kharissova OV, Kharisov BI, editors. Handbook of ecomaterials. Cham: Springer International Publishing; 2017. p. 1–17.Google Scholar
  27. 27.
    Burdusel AC, Gherasim O, Grumezescu AM, Mogoanta L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials (Basel). 2018;8(9).CrossRefGoogle Scholar
  28. 28.
    Fei Yin Z, Wu L, Gui Yang H, Hua Su Y. Recent progress in biomedical applications of titanium dioxide. Phys Chem Chem Phys. 2013;15(14):4844–58.CrossRefGoogle Scholar
  29. 29.
    Goel S, Chen F, Cai W. Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small. 2014;10(4):631–45.CrossRefGoogle Scholar
  30. 30.
    Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta. 2018;184:537–56.CrossRefGoogle Scholar
  31. 31.
    Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1(3):161–76.CrossRefGoogle Scholar
  32. 32.
    Andonova V. Synthetic polymer-based nanoparticles: intellogent drug delivery systems. In: Reddy B, editor. Acrylic polymers in healthcare. London, UK: IntechOpen; 2017. p. 27.Google Scholar
  33. 33.
    Olatunji O. Biomedical application of natural polymers. In: Olatunji O, editor. Natural polymers: industry techniques and applications. Cham: Springer International Publishing; 2016. p. 93–114.CrossRefGoogle Scholar
  34. 34.
    Aravamudhan A, Ramos DM, Nada AA, Kumbar SG. Chapter 4—Natural polymers: polysaccharides and their derivatives for biomedical applications. In: Kumbar SG, Laurencin CT, Deng M, editors. Natural and synthetic biomedical polymers. Oxford: Elsevier; 2014. p. 67–89.CrossRefGoogle Scholar
  35. 35.
    Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein nanoparticles: promising platforms for drug delivery applications. ACS Biomater Sci Eng. 2018;4(12):3939–61.CrossRefGoogle Scholar
  36. 36.
    Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132(3):171–83.CrossRefGoogle Scholar
  37. 37.
    Ahumada M, Lissi E, Montagut AM, Valenzuela-Henriquez F, Pacioni NL, Alarcon EI. Association models for binding of molecules to nanostructures. Analyst. 2017;142(12):2067–89.CrossRefGoogle Scholar
  38. 38.
    Wei G, Ma PX. Nanostructured biomaterials for regeneration. Adv Funct Mater. 2008;18(22):3566–82.CrossRefGoogle Scholar
  39. 39.
    Terzic A, Pfenning MA, Gores GJ, Harper CM Jr. Regenerative medicine build-out. Stem Cells Transl Med. 2015;4(12):1373–9.CrossRefGoogle Scholar
  40. 40.
    Allickson JG. Emerging translation of regenerative therapies. Clin Pharmacol Ther. 2017;101(1):28–30.CrossRefGoogle Scholar
  41. 41.
    Broughton KM, Sussman MA. Enhancement strategies for cardiac regenerative cell therapy. Circ Res. 2018;123(2):177–87.CrossRefGoogle Scholar
  42. 42.
    Greenwood HL, Thorsteinsdottir H, Perry G, Renihan J, Singer P, Daar A. Regenerative medicine: new opportunities for developing countries. Int J Biotechnol. 2006;8(1–2):60–77.CrossRefGoogle Scholar
  43. 43.
    Caplan AI, West MD. Progressive approval: a proposal for a new regulatory pathway for regenerative medicine. Stem Cells Transl Med. 2014;3(5):560–3.CrossRefGoogle Scholar
  44. 44.
    Hunsberger J, Harrysson O, Shirwaiker R, Starly B, Wysk R, Cohen P, Allickson J, Yoo J, Atala A. Manufacturing road map for tissue engineering and regenerative medicine technologies. Stem Cells Transl Med. 2015;4(2):130–5.CrossRefGoogle Scholar
  45. 45.
    Li MD, Atkins H, Bubela T. The global landscape of stem cell clinical trials. Regen Med. 2014;9(1):27–39.CrossRefGoogle Scholar
  46. 46.
    Mount NM, Ward SJ, Kefalas P, Hyllner J. Cell-based therapy technology classifications and translational challenges. Philos Trans R Soc Lond B Biol Sci. 2015;370(1680).CrossRefGoogle Scholar
  47. 47.
    Heathman TR, Nienow AW, McCall MJ, Coopman K, Kara B, Hewitt CJ. The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med. 2015;10(1):49–64.CrossRefGoogle Scholar
  48. 48.
    Marincola FM. The trouble with translational medicine. J Intern Med. 2011;270(2):123–7.CrossRefGoogle Scholar
  49. 49.
    Mason C, McCall MJ, Culme-Seymour EJ, Suthasan S, Edwards-Parton S, Bonfiglio GA, Reeve BC. The global cell therapy industry continues to rise during the second and third quarters of 2012. Cell Stem Cell. 2012;11(6):735–9.CrossRefGoogle Scholar
  50. 50.
    Faulkner A. Law’s performativities: shaping the emergence of regenerative medicine through European Union legislation. Soc Stud Sci. 2018;42(5):753–74.CrossRefGoogle Scholar
  51. 51.
    Tobita M, Konomi K, Torashima Y, Kimura K, Taoka M, Kaminota M. Japan’s challenges of translational regenerative medicine: act on the safety of regenerative medicine. Regen Med. 2016;4:78–81.Google Scholar
  52. 52.
    Singh M, Singh S, Prasad S, Gambhir IS. Nanotechnology in medicine and antibacterial effect of silver nanopartices. Digest J Nanomater Biostruct. 2008;3(3):115–22.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Caitlin Lazurko
    • 1
    • 2
  • Erik Jacques
    • 1
  • Manuel Ahumada
    • 3
  • Emilio I. Alarcon
    • 1
    • 2
    Email author
  1. 1.Division of Cardiac SurgeryUniversity of Ottawa Heart InstituteOttawaCanada
  2. 2.Department of Biochemistry, Microbiology, and Immunology, Faculty of MedicineUniversity of OttawaOttawaCanada
  3. 3.Facultad de CienciasCentro de Nanotecnología Aplicada, Universidad MayorHuechuraba, RMChile

Personalised recommendations