Advertisement

Analog Implementations of Fractional-Order Chaotic Systems

  • Esteban Tlelo-Cuautle
  • Ana Dalia Pano-Azucena
  • Omar Guillén-Fernández
  • Alejandro Silva-Juárez
Chapter

Abstract

This chapter shows a method to approach the fractional-order derivatives of a chaotic oscillator in the frequency domain. It is shown that one can implement the approached transfer functions using amplifiers and passive circuit elements, and also one can use field-programmable analog arrays (FPAAs) to reduce mismatch when using discrete devices. Those implementations are described herein sketching block diagrams of the mathematical models.

Keywords

Fractional-order chaotic oscillator Frequency domain approximation Charef’s approximation Laplace Biquad Operational amplifier Fractance Ladder topology Tree topology Fractional integrator FPAA 

References

  1. 1.
    C. Li, J. Yan, The synchronization of three fractional differential systems. Chaos Solitons Fractals 32(2), 751–757 (2007)CrossRefGoogle Scholar
  2. 2.
    H.Y. Jia, Q. Tao, Z.Q. Chen, Analysis and circuit design of a fractional-order Lorenz system with different fractional orders. Syst. Sci. Control Eng. Open Access J. 2(1), 745–750 (2014)CrossRefGoogle Scholar
  3. 3.
    C. Li, J. Yan, The synchronization of three fractional differential systems. Chaos Solitons Fractals 32(2), 751–757 (2007)CrossRefGoogle Scholar
  4. 4.
    H.Y. Jia, Q. Tao, Z.Q. Chen, Analysis and circuit design of a fractional-order Lorenz system with different fractional orders. Syst. Sci. Control Eng. Open Access J. 2(1), 745–750 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Charef, H.H. Sun, Y.Y. Tsao, B. Onaral, Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. Chen, W. Pan, R. Wu, K. Wang, Y. He, Generation and circuit implementation of fractional-order multi-scroll attractors. Chaos Solitons Fractals 85, 22–31 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    S.-P. Wang, S.-K. Lao, H.-K. Chen, J.-H. Chen, S.-Y. Chen, Implementation of the fractional-order Chen–Lee system by electronic circuit. Int. J. Bifurcation Chaos 23(2), 1350030 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Y. Yu, H.-X. Li, The synchronization of fractional-order Rössler hyperchaotic systems. Phys. A Stat. Mech. Appl. 387(5–6), 1393–1403 (2008)CrossRefGoogle Scholar
  9. 9.
    C. Li, G. Chen, Chaos and hyperchaos in the fractional-order rössler equations. Phys. A Stat. Mech. Appl. 341, 55–61 (2004)CrossRefGoogle Scholar
  10. 10.
    I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91(3), 034101 (2003)Google Scholar
  11. 11.
    W.M. Ahmad, J.C. Sprott, Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16(2), 339–351 (2003)CrossRefGoogle Scholar
  12. 12.
    I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198 (Elsevier, Amsterdam, 1998)zbMATHGoogle Scholar
  13. 13.
    A. Djouambi, A. Charef, A. BesançOn, Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function. Int. J. Appl. Math. Comput. Sci. 17(4), 455–462 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    C. Xiang-Rong, L. Chong-Xin, W. Fa-Qiang, Circuit realization of the fractional-order unified chaotic system. Chin. Phys. B 17(5), 1664 (2008)CrossRefGoogle Scholar
  15. 15.
    C. Muñiz-Montero, L.V. García-Jiménez, L.A. Sánchez-Gaspariano, C. Sánchez-López, V.R. González-Díaz, E. Tlelo-Cuautle, New alternatives for analog implementation of fractional-order integrators, differentiators and PID controllers based on integer-order integrators. Nonlinear Dyn. 90(1), 241–256 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    C. Muñiz-Montero, L.A. Sánchez-Gaspariano, C. Sánchez-López, V.R. González-Díaz, E. Tlelo-Cuautle, On the electronic realizations of fractional-order phase-lead-lag compensators with OpAmps and FPAAs, in Fractional Order Control and Synchronization of Chaotic Systems (Springer, Berlin, 2017), pp. 131–164CrossRefGoogle Scholar
  17. 17.
    J. Lü, G. Chen, Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurcation Chaos 16(4), 775–858 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    T.J. Freeborn, B. Maundy, A.S. Elwakil, Field programmable analogue array implementation of fractional step filters. IET Circuits, Devices Syst. 4(6), 514–524 (2010)CrossRefGoogle Scholar
  19. 19.
    Anadigm, Dynamically Reconfigurable dpASP, 3rd Generation, AN231E04 Datasheet Rev 1.2 (2014). www.anadigm.com

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Esteban Tlelo-Cuautle
    • 1
  • Ana Dalia Pano-Azucena
    • 1
  • Omar Guillén-Fernández
    • 1
  • Alejandro Silva-Juárez
    • 1
  1. 1.INAOETonantzintlaMexico

Personalised recommendations