Advertisement

Insects Today and in the Future

  • Hans-Dietrich ReckhausEmail author
Chapter
Part of the Fascinating Life Sciences book series (FLS)

Abstract

How have insects developed worldwide in recent years? Have their numbers increased or decreased? How will their development continue to progress? It is difficult to answer these questions since most insect species have not yet been discovered and accordingly, their populations have not been investigated. Estimates of their numbers range between two and ten million.

References

  1. Addendum. (2017). Wir haben weniger Platz als sie denken. https://www.addendum.org/platzverbrauch/versiegelung-platzverbrauch/. Accessed 4.7.2018.
  2. Ball, S. G., & Morris, R. K. A. (2014). A review of the scarce and threatened flies of Great Britain. Part 6: Hoverflies family Syrphidae. Nature Conservation Committee.Google Scholar
  3. Barrera Medina, R., & Vidal Munoz, C. (2013, June 30). Primer reporte de Vespula vulgaris en Chile. In Boletin de la Sociedad Entomologica Aragonesa (S.E.A.) (No. 52, p. 277). S.E.A.Google Scholar
  4. Baufeld, P., Unger, J.-G., & Heimbach, U. (2011). Westlicher Maiswurzelbohrer. Informationsblatt des JKI (p. 1). Braunschweig: Julius Kühn-Institut.Google Scholar
  5. Bebber, D. P., et al. (2013). Crop pests and pathogens move polewards in a warming world. In Nature climate change (No. 3, p. 985 ff).CrossRefGoogle Scholar
  6. Berenbaum, M. (2009). Insect biodiversity—Millions and millions. In R. G. Foottit & P. H. Adler (Eds.), Insect biodiversity. Science and society (p. 576 ff). Chichester: Wiley.Google Scholar
  7. BMELV. (2007). Agrobiodiversität erhalten, Potentiale der Land-, Forst- und Fischereiwirtschaft erschliessen und nachhaltig nutzen (p. 12). Bonn: BMELV.Google Scholar
  8. Bradley, N. L., et al. (1999). Phenological changes reflect climate change in Wisconsin. Proceedings of the National Academy of Sciences of the United States of America, 96, 9701 ff.CrossRefGoogle Scholar
  9. Braun, S., & Flückiger, W. (2004). Bodenversauerung in Waldbeobachtungsflächen der Schweiz. Bulletin BGS, 27, 59–62.Google Scholar
  10. Brooks, D. R., et al. (2012). Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. Journal of Applied Ecology, 49, 1009 ff.CrossRefGoogle Scholar
  11. Bundesamt für Naturschutz. (2011). Rote Liste der gefährdeten Tiere, Pflanzen und Pilze Deutschlands. Vol. 3: Wirbellose Tiere (Teil 1). In Naturschutz und Biologische Vielfalt, Heft 70(3) (Vol. 70, No. 3, p. 16). Bonn-Bad Godesberg.Google Scholar
  12. Bundesamt für Naturschutz. (2017). Agrar report 2017 (p. 9). Bonn.Google Scholar
  13. Bundesamt für Naturschutz (BfN). (2011a). Vol. 3: Wirbellose Tiere (Teil 1). In Naturschutz und Biologische Vielfalt (Vol. 70, No. 3).Google Scholar
  14. Bundesamt für Naturschutz (BfN). (2011b). Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Vol 3: Wirbellose Tiere (Teil 1) (p. 58 ff). Bonn-Bad Godesberg: Bundesamt für Naturschutz.Google Scholar
  15. Bundesamt für Naturschutz (BfN). (2016). Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Vol. 4: Wirbellose Tiere (Teil 1) (p. 25 ff). Bonn-Bad Godesberg: Bundesamt für Naturschutz.Google Scholar
  16. Burkle, L. A., et al. (2013, March 29). Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science, 339, 1611 ff.CrossRefGoogle Scholar
  17. Carrington, L. B., et al. (2013). Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. Plos One, 8(3), 3 ff.CrossRefGoogle Scholar
  18. Cordillot, F., & Klaus, G. (2011). Gefährdete Arten in der Schweiz. Synthese Rote Listen, Stand 2010 (p. 7). Bern: Bundesamt für Umwelt.Google Scholar
  19. COSEWIC. (2015). COSEWIC assessment and status report on the Yellow-banded Bumble Bee Bombus terricola in Canada (p. III ff). Ottawa: Committee on the Status of Endangered Wildlife in Canada.Google Scholar
  20. COSEWIC. (2016a). COSEWIC assessment and status report on the Nine-spotted Lady Beetle Coccinella novemnotata in Canada (p. V f). Ottawa: Committee on the Status of Endangered Wildlife in Canada.Google Scholar
  21. COSEWIC. (2016b). Canadian wildlife species at risk (p. 2). Committee on the Status of Endangered Wildlife in Canada.Google Scholar
  22. Cremer, S. (2012, April). Die vernachlässigte Ameise, Lasius neglectus, in einem fränkischen Mehrfamilienhaus. Pest Control News, 50, 21.Google Scholar
  23. Cremer, S. (2017). Invasive Ameisen in Europa: Wie sie sich ausbreiten und die heimische Fauna verändern. In Rundgespräche Forum Ökologie, Vol. 46 “Tierwelt im Wandel—Wanderung, Zuwanderung, Rückgang” (p. 105 ff).Google Scholar
  24. Crick, H. Q., Dudley, C., & Glue, D. E. (1997). UK birds are laying eggs earlier. Nature, 388, 526.Google Scholar
  25. Defila, C. (2005). Phänologische Trends bei den Waldbäumen in der Schweiz | Phenological trends regarding the forest trees in Switzerland. Schweizerische Zeitschrift für Forstwesen, 156(6), 208 ff.CrossRefGoogle Scholar
  26. Department of Sustainability and Environment. (2009). Advisory list if threatened invertebrate fauna in Victoria. 2009 (p. 6). East Melbourne, Victoria: Department of Sustainability and Environment.Google Scholar
  27. Descimon, H., et al. (2006). Decline and extinction of Parnassius apollo populations in France—continued. In E. Kuhn, R. Feldman, & J. Settele (Eds.), Studies on the ecology and conservation of butterflies in Europe. Sofia, Bulgaria: Pensoft.Google Scholar
  28. Deutsche Bundesregierung. (2012). Nationale Nachhaltigkeitsstrategie, Fortschrittsbericht 2012 (p. 70 f). Berlin.Google Scholar
  29. Deutsches Umweltbundesamt. (n.d.a). Durch Umweltschutz die biologische Vielfalt erhalten (p. 62 ff). Bonn: Deutsches Umweltbundesamt.Google Scholar
  30. Deutsches Umweltbundesamt. (n.d.b). Durch Umweltschutz die biologische Vielfalt erhalten. Berlin: Deutsches Umweltbundesamt.Google Scholar
  31. Dirzo, R., et al. (2014). Defaunation in the Anthropocene. Science, 345, 401 f.  https://doi.org/10.1126/sciene.1251817.
  32. Doxa, A., et al. (2012). Preventing biotic homogenization of farmland bird communities: The role of high nature value farmland. Agriculture, Ecosystems and Environment 148, 85 ff.CrossRefGoogle Scholar
  33. Droeschmeister, et al. (2012). Landwirtschaftspolitik der EU muss umweltfreundlicher werden. Der Falke, 59, 316.Google Scholar
  34. Dullingera, S., Esslb, F., et al. (2007). Europe’s other debt crisis caused by the long legacy of future extinctions. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 110(18), 7342 ff.Google Scholar
  35. Entrup, N. L., & Kivelitz, H. (2010). Bedeutung des Maisanbaus für die Landwirtschaft. In Fachtagung 18.2.2010 (p. 9). Hannover: Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küstenschutz und Naturschutz.Google Scholar
  36. Europäische Union. (2012). Leitlinien für bewährte Praktiken zur Begrenzung, Milderung und Kompensierung der Bodenversiegelung. Luxemburg.Google Scholar
  37. European Environment Agency. (2015). The European grassland butterfly indicator: 1990–2013 (p. 37).Google Scholar
  38. FAO. (2013). FAO statistical yearbook 2013. World food and agriculture. Rome: FAO.Google Scholar
  39. FAO. (2015a). Status of the world’s soil resources. Main report (p. 52 ff). Rome.Google Scholar
  40. FAO. (2015b). FAO, statistics division 2015. Rome. http://faostat.fao.org/site/567/desktopdefault.aspx#ancor. Accessed 3.11.2015.
  41. FAO. (2017). The future of food and agriculture. Trends and challenges. Rome.Google Scholar
  42. Food and Agriculture Organization FAO. (2010). Global forest resources assessment 2010 (p. 17). Rome.Google Scholar
  43. Food and Agriculture Organization FAO. (2015). Global forest resources assessment 2015. How are the world’s forests changing (p. 3). Rome.Google Scholar
  44. Forister, M. L., & Shapiro, A. M. (2003). Climatic trends and advancing spring flight of butterflies in lowland California. Global Change Biology, 9, 1130 ff.Google Scholar
  45. Fox, R., Warren, M. S., & Brereton, T. (2010). The butterfly Red List for Great Britain. Joint Nature Conservation Committee.Google Scholar
  46. Franco, A. M. A., et al. (2006). Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biology, 12, 1545 ff.CrossRefGoogle Scholar
  47. Freier, B., Wendt, C., & Neukampf, R. (2015). Zur Befallssituation des Maiszünslers (Ost-rinia nubilalis) und Westlichen Maiswurzelbohrers (Diabrotica virgifera virgifera) in Deutschland und deren Bekämpfung. Journal für Kulturpflanzen, 67(4), 113. Stuttgart: Verlag Eugen Ulmer KG.Google Scholar
  48. Gaspers, C. (2009). The European corn borer (Ostrinia nubilalis, Hbn.), its susceptibility to the Bt-toxin Cry1F, its pheromone races and its gene flow in Europe in view of an Insect Resistance Management (p. 1) (Dissertation). Universität Aachen.Google Scholar
  49. Gibbs, J. P., & Breisch, A. R. (2001). Climate warming and calling phenology of frogs near Ithaca, New York, 1900–1999. Conservation Biology, 15, 1175 ff.Google Scholar
  50. Global 2000. (2015). Bodenatlas 2015 (p. 19). Vienna: Global 2000.Google Scholar
  51. Gruissem, W. (2012). Nutzpflanzen—resistent, genügsam, ertragsreich. Referat Treffpunkt Science City, 6.5.2012.Google Scholar
  52. Hallmann, C. A., et al. (2017, October). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. Plos One, 12(10), 1 ff.Google Scholar
  53. Harrington, R., Woiwod, I., & Sparks, T. (1999). Climate change and trophic interactions. Trends in Ecology & Evolution, 14, 146 ff.Google Scholar
  54. Hidetoshi, I., et al. (2016). Linking the continental migratory cycle of the monarch butterfly to understand its population decline. Oikos, 125(S. 1081–1091), 1082 ff.  https://doi.org/10.1111/oik.03196.CrossRefGoogle Scholar
  55. International Assessment of Agricultural Knowledge, Science and Technology for Development. (2009). Agriculture at a crossroads, global report (p. 284). Washington, DC. Accessible online: http://www.fao.org/fileadmin/templates/est/Investment/Agriculture_at_a_Crossroads_Global_Report_IAASTD.pdf. Accessed 4.7.2019.
  56. Invasive Species Specialist Group IUCN/SSC. (2013). Aliens, the invasive species bulletin. 22, 38 ff.Google Scholar
  57. IUCN. (2018). Brussels: International Union for Conservation of Nature, 2018/57, p. 4.Google Scholar
  58. IUCN Bangladesh. (2015). Red List of Bangladesh. Volume 7: Butterflies (p. 37). Dhaka, Bangladesh: IUCN, International Union for Conservation of Nature, Bangladesh Country Office.Google Scholar
  59. Kalkmann, V. J., et al. (2010). European Red List of dragonflies (p. 9 f). Luxembourg: International Union for Conservation of Nature.Google Scholar
  60. Klasen, J., et al. (2008). Einfluss von Klimaänderungen auf vektorübertragende Krankheiten. In Vortrag Umweltbundesamt (pp. 7–9).Google Scholar
  61. Klasen, J., & Schrader, G. (2011, March 23–25). Bettwanzen: Biologie des Parasiten und Praxis der Bekämpfung. In Fortbildung für den öffentlichen Gesundheitsdienstes 2011 (p. 27).Google Scholar
  62. Kupca, A. M. (2009). Ixodus ricinus (Ixodidae): Saisonale Aktivität und natürliche Infektionen mit dem FSME-Virus an ausgewählten Standorten in Bayern (p. 6) (Dissertation). Ludwig-Maximilian Universität zu München.Google Scholar
  63. Laimer, M., & Maghuln, F. (2015). Entstehung und Zukunft unserer Nahrungspflanzen. Journal für Ernährungsmedizin, 17(2), 19.Google Scholar
  64. Le Comité français de l’Union internationale pour la conservation de la nature (UICN). (2014). La Liste rouge des espèces menacées en France. Papillons de jour de France métropolitaine.Google Scholar
  65. Lester, P. J., et al. (2017). The long-term population dynamics of common wasps in their native and invaded range. Journal of Animal Ecology, 86, 317. British Ecological Society.Google Scholar
  66. Lowe, S., et al. (2000). 100 of the world’s worst invasive alien species. A selection from the global invasive species database (12 pp). Invasive Species Specialist Group (ISSG), a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN). First published as special lift-out in Aliens 12, December 2000. Updated and reprinted version: November 2004, p. 3.Google Scholar
  67. Meise, Th. (2003). Monitoring der Resistenzentwicklung des Maiszünsler (Ostrinia nubilalis, Hübner) gegenüber Bt-Mais (p. 9) (Dissertation). Universität Göttingen.Google Scholar
  68. Meissle, M., et al. (2009). Pests, pesticide use and alternative options in European maize production: Current status and future prospects. Journal of Applied Entomology, 134, 363 f. Blackwell Verlag.Google Scholar
  69. Mücke, H.-G., et al. (2009). Gesundheitliche Anpassung an den Klimawandel (p. 7 ff). Berlin: UBA.Google Scholar
  70. Müller-Motzfeld, G. (2007, Oktober 13–14). Klimawandel und Faunenveränderung bei Insekten. In Gemeinsame Tagung des NABU-BFA Entomologie mit dem LFA Entomologie Berlin/Brandenburg sowie den Berliner entomologischen Fachgruppen, dem Entomologischen Verein Orion und dem Naturkundemuseum der Humboldt-Universität (p. 2).Google Scholar
  71. Natural England. (2015). A review of the beetles of Great Britain. The Darkling Beetles and their allies (Natural England Commissioned Report NECR148).Google Scholar
  72. Naturschutzbund Deutschland (NABU). (2008). Waldwirtschaft 2020. Perspektiven und Anforderungen aus Sicht des Naturschutzes (p. 6). Berlin: NABU.Google Scholar
  73. Nieto, A., et al. (2014). European Red List of bees (p. 10 f). Luxembourg: IUCN. International Union for Conservation of Nature.Google Scholar
  74. Österreichisches Umweltbundesamt. (2005). Rote Listen gefährdeter Tiere Österreichs. Teil 1 (p. 199). Vienna: Böhlau Verlag.Google Scholar
  75. Österreichisches Umweltbundesamt. (2007). Rote Listen gefährdeter Tiere Österreichs. Teil 2 (p. 313 ff). Vienna: Böhlau Verlag.Google Scholar
  76. Parmesan, C. (1996). Climate and species’ range. Nature, 382, 765 f.CrossRefGoogle Scholar
  77. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics, 37, 637–669.CrossRefGoogle Scholar
  78. Pateman, R. M., et al. (2012, May 25). Temperature-dependent alterations in host use drive rapid range expansion in a butterfly. Science, 336, 1028 ff.  https://doi.org/10.1126/science.1216980.CrossRefGoogle Scholar
  79. Paulson, D. R. (2001). Recent odonata records from southern Florida: Effects of global warming? International Journal of Odonatology, 4, 57 ff.CrossRefGoogle Scholar
  80. Porter, J. R., et al. (2014). Food security and food production systems. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, et al. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 500). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar
  81. Reichholf, J. H. (2017). Das Verschwinden der Schmetterlinge. Hamburg: Deutsche Wildtier Stiftung.Google Scholar
  82. Rochlin, I., et al. (2016). Anthropogenic impacts on mosquito populations in North America over the past century. Nature Communications, 2.  https://doi.org/10.1038/ncomms13604.
  83. Scheuchl, E., & Schwenninger, H. R. (2015). Kritisches Verzeichnis und aktuelle Checkliste der Wildbienen Deutschlands (Hymenoptera, Anthophila) sowie Anmerkungen zur Gefährdung. Mitteilungen des Entomologischen Vereins Stuttgart, 50(1).Google Scholar
  84. Schuch, S. (2011). Long-term development of different grassland insect communities in Central Europe since the 1950s (p. 23) (Dissertation). Universität Göttingen.Google Scholar
  85. Schweizerisches Bundesamt für Umwelt. (2011). Gefährdete Arten in der Schweiz (p. 51). Bern.Google Scholar
  86. Schweizerisches Bundesamt für Umwelt. (2012). Rote Listen Eintagsfliegen, Steinfliegen, Köcherfliegen (p. 20). Bern.Google Scholar
  87. Schweizerisches Bundesamt für Umwelt. (2014). Rote Liste der Tagfalter und Widderchen (p. 32 ff). Bern.Google Scholar
  88. Sobczyk, T. (2014). Der Eichenprozessionsspinner in Deutschland. In BfN-Skripten (Vol. 365, p. 27 ff).Google Scholar
  89. Sorg, M., et al. (2013). Ermittlung der Biomassen flugaktiver Insekten im Naturschutzgebiet Orbroicher Bruch mit Malaise-Fallen in den Jahren 1989 und 2013. Mitteilungen aus dem Entomologischen Verein Krefeld, 1, 1–5.Google Scholar
  90. Stark, K., et al. (2009). Die Auswirkungen des Klimawandels. Welche neuen Infektionskrankheiten und gesundheitlichen Probleme sind zu erwarten? Bundesgesundheitsblatt, 1.CrossRefGoogle Scholar
  91. Statistisches Bundesamt. (2014). Statistisches Jahrbuch 2014. Wiesbaden: Statistisches Bundesamt.Google Scholar
  92. Stöckli, S., et al. (2012). Einfluss der Klimaänderung auf den Apfelwickler. Schweizer Zeitschrift für Obst- und Weinbau, 19(12), 7 ff.Google Scholar
  93. Sutton, S. L., & Collins, N. M. (1991). Insects and tropical forest conservation. In The conservation of insects and their habitats (pp. 405–424). London: Academic Press.Google Scholar
  94. Szymanski, J., et al. (2016, June). Rusty patched bumble bee (Bombus affinis) species status assessment (Final Report, Version 1, p. 98 ff). U.S. Fish and Wildlife Services.Google Scholar
  95. Thogmartin, W. E., et al. (2017). Monarch butterfly population decline in North America: Identifying the threatening processes. Royal Society Open Science, 4, 2. http://dx.doi.org/10.1098/rsos.170760.CrossRefGoogle Scholar
  96. Thomas, C. D., et al. (2001). Ecological and evolutionary processes at expanding range margins. Nature, 411, 577 ff.CrossRefGoogle Scholar
  97. Townsend, C. R., et al. (2002). Ökologie (2nd ed., p. 434). Heidelberg/Berlin: Springer Verlag.Google Scholar
  98. Umweltbundesamt. (2013a). Beobachteter Klimawandel. 23.07.2015. www.umwelt-bundesamt.de/themen/klima-energie/klimawandel/beobachteter-klimawandel. Accessed 4.11.2015.
  99. Umweltbundesamt. (2013b, July 25). Zu erwartende Klimaänderungen bis 2100. www.umweltbundesamt.de/themen/klima-energie/klimawandel/zu-erwartende-klimaaenderungen-bis-2100. Accessed 4.11.2015.
  100. United Nations Department of Economic and Social Affairs. (2014). World urbanization prospects. The 2014 revision (p. 1). United Nations.Google Scholar
  101. United Nations Global Environment Programme. (2012). GEO global environment outlook (Vol. 5). UN.Google Scholar
  102. United Nations Population Division. (2013). World population prospects. The 2012 revision (p. XV). New York.Google Scholar
  103. U.S. Fish & Wildlife Service. (2018). ECOS Environmental Conservation Online System, listed species reports: Invertebrate animals. https://ecos.fws.gov/ecp/species-reports. Accessed June 21, 2018.
  104. Vi, J.-C., et al. (Eds.). (2009). Wildlife in a changing world—An analysis of the 2008 IUCN Red List of threatened species (p. 17). IUCN: Gland, Switzerland.Google Scholar
  105. Vlinderstichting. (2018). De Vlinderstichting in 2017. Jaarverslag 2017 (p. 15 ff).Google Scholar
  106. von Swaay, C., et al. (2010) European Red List of butterflies. European Red List of dragonflies (p. 9 f). Luxembourg: International Union for Conservation of Nature.Google Scholar
  107. WCS. (2016). National threatened species for Uganda (p. 8).Google Scholar
  108. Wiggenhorn, R. (2015). Auftreten tierischer Schädlinge in Mais und Strategien zur Bekämpfung. In Fachtagung des Deutschen Maiskomitees e.V. (DMK) am 20. Oktober 2015 in Saerbeck (p. 10). Saerbeck: Deutsches Maiskomitee.Google Scholar
  109. Wilson, E. O. (1988). The current state of biological diversity. In E. O. Wilson (Ed.), Biodiversity (p. 4 ff). Washington: Washington National Academic Press.Google Scholar
  110. Wilson, E. O. (1997). Der Wert der Vielfalt, Die Bedrohung des Artenreichtums und das Überleben des Menschen (p. 171). Munich: Piper Verlag.Google Scholar
  111. Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen WBGU. (2011). Welt im Wandel. Gesellschaftsvertrag für eine Grosse Transformation (p. 38 f). Berlin: WBGU.Google Scholar
  112. Witte, V. (2014). Invasive Ameisen: Superkolonien—super Dominanz. In Rundgespräche der Kommission für Ökologie, Vol. 43 »Soziale Insekten in einer sich wandelnden Welt« (p. 125). Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
  113. World Wide Fund for Nature WWF. (2014). Auswirkungen des Klimawandels auf Arten weltweit. Hintergrundinformationen (p. 1). WWF.Google Scholar
  114. Zaller, J. G., et al. (2014). Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types. Frontiers in Environmental Science, 2, 44.  https://doi.org/10.3389/fenvs.2014.00044.
  115. Zimmermann, O. et al. (2014, September 23–26). Die Bekämpfung von bivoltinen Maiszünsler Populationen—ein Fazit aus Forschung & Praxis. In 59. Deutsche Pflanzenschutztagung „Forschen—Wissen—Pflanzen schützen: Ernährung sichern!‟ (p. 485). Freiburg.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.TeufenSwitzerland

Personalised recommendations