Variations of the Itai-Rodeh Algorithm for Computing Anonymous Ring Size

  • Wan FokkinkEmail author
  • Guus Samsom
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11760)


We propose two adaptations of the probabilistic Itai-Rodeh algorithm for computing the size of an anonymous asynchronous ring. This Monte Carlo algorithm (inevitably) allows for wrong outcomes. Our adaptations reduce the chance that this happens. Furthermore, we propose a new algorithm that has a better message complexity.


  1. 1.
    Andrés, M., Palamidessi, C., van Rossum, P., Sokolova, A.: Information hiding in probabilistic concurrent systems. Theoret. Comput. Sci. 412(28), 3072–3089 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the STOC 1980, pp. 82–93. ACM (1980)Google Scholar
  3. 3.
    Bakhshi, R., Fokkink, W., Pang, J., van de Pol, J.: Leader election in anonymous rings: Franklin goes probabilistic. In: Proceedings of the IFIP TCS 2008, pp. 57–72. IFIP (2008)Google Scholar
  4. 4.
    Boldi, P., Vigna, S.: An effective characterization of computability in anonymous networks. In: Welch, J. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer, Heidelberg (2001). Scholar
  5. 5.
    Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding in circular configurations of processes. Commun. ACM 22, 281–283 (1979)CrossRefGoogle Scholar
  6. 6.
    Fokkink, W.: Distributed Algorithms: An Intuitive Approach. MIT Press, Cambridge (2013)zbMATHGoogle Scholar
  7. 7.
    Fokkink, W., Pang, J.: Simplifying Itai-Rodeh leader election for anonymous rings. In: Proceedings of the AVOCS 2004. Electronic Notes in Theoretical Computer Science, vol. 128, no. 6, pp. 53–68. Elsevier (2005)Google Scholar
  8. 8.
    Fokkink, W., Pang, J.: Variations on Itai-Rodeh leader election for anonymous rings and their analysis in PRISM. J. Univ. Comput. Sci. 12, 981–1006 (2006)Google Scholar
  9. 9.
    Franklin, W.R.: On an improved algorithm for decentralized extrema-finding in circular configurations of processes. Commun. ACM 25(5), 336–337 (1982)CrossRefGoogle Scholar
  10. 10.
    IEEE Computer Society: IEEE standard for a high performance serial bus. Technical report, IEEE (1994)Google Scholar
  11. 11.
    Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Comput. 88(1), 60–87 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  13. 13.
    Timmer, M., Katoen, J.P., van de Pol, J., Stoelinga, M.: Confluence reduction for Markov automata. Theoret. Comput. Sci. 655, 193–219 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Vrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations