Macroeconomic Forecasting in the Era of Big Data pp 541-584 | Cite as
Unit Roots and Cointegration
Abstract
In this chapter we investigate how the possible presence of unit roots and cointegration affects forecasting with Big Data. As most macroeoconomic time series are very persistent and may contain unit roots, a proper handling of unit roots and cointegration is of paramount importance for macroeconomic forecasting. The high-dimensional nature of Big Data complicates the analysis of unit roots and cointegration in two ways. First, transformations to stationarity require performing many unit root tests, increasing room for errors in the classification. Second, modelling unit roots and cointegration directly is more difficult, as standard high-dimensional techniques such as factor models and penalized regression are not directly applicable to (co)integrated data and need to be adapted. In this chapter we provide an overview of both issues and review methods proposed to address these issues. These methods are also illustrated with two empirical applications.
References
- Ahn, S. C., & Horenstein, A. R. (2013). Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.Google Scholar
- Alessi, L., Barigozzi, M., & Capasso, M. (2010). Improved penalization for determining the number of factors in approximate factor models. Statistics & Probability Letters, 80(23), 1806–1813.CrossRefGoogle Scholar
- Bai, J. (2004). Estimating cross-section common stochastic trends in nonstationary panel data. Journal of Econometrics, 122(1), 137–183.CrossRefGoogle Scholar
- Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191–221.CrossRefGoogle Scholar
- Bai, J., & Ng, S. (2004). A panic attack on unit roots and cointegration. Econometrica, 72(4), 1127–1177.CrossRefGoogle Scholar
- Banerjee, A., Marcellino, M., & Masten, I. (2014). Forecasting with factor-augmented error correction models. International Journal of Forecasting, 30(3), 589–612.CrossRefGoogle Scholar
- Banerjee, A., Marcellino, M., & Masten, I. (2016). An overview of the factor augmented error-correction model. In E. Hillebrand & S. J. Koopman (Eds.), Dynamic factor models (Chap. 1, Vol. 35, pp. 3–41). Advances in Econometrics. Bingley: Emerald Group Publishing Limited.Google Scholar
- Banerjee, A., Marcellino, M., & Masten, I. (2017). Structural FECM: Cointegration in large-scale structural FAVAR models. Journal of Applied Econometrics, 32(6), 1069–1086.CrossRefGoogle Scholar
- Barigozzi, M., Lippi, M., & Luciani, M. (2017). Dynamic factor models, cointegration, and error correction mechanisms (arXiv e-prints No. 1510.02399).Google Scholar
- Barigozzi, M., Lippi, M., & Luciani, M. (2018). Non-stationary dynamic factor models for large datasets (arXiv e-prints No. 1602.02398).Google Scholar
- Barigozzi, M., & Trapani, L. (2018). Determining the dimension of factor structures in non-stationary large datasets (arXiv e-prints No. 1806.03647).Google Scholar
- Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57(1), 289–300.Google Scholar
- Bernanke, B., Boivin, J., & Eliasz, P. S. (2005). Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach. The Quarterly Journal of Economics, 120(1), 387–422.Google Scholar
- Callot, L. A., & Kock, A. B. (2014). Oracle efficient estimation and forecasting with the adaptive lasso and the adaptive group lasso in vector autoregressions. Essays in Nonlinear Time Series Econometrics, 238–268.Google Scholar
- Cavaliere, G. (2005). Unit root tests under time-varying variances. Econometric Reviews, 23(3), 259–292.CrossRefGoogle Scholar
- Cavaliere, G., Phillips, P. C. B., Smeekes, S., & Taylor, A. M. R. (2015). Lag length selection for unit root tests in the presence of nonstationary volatility. Econometric Reviews, 34(4), 512–536.CrossRefGoogle Scholar
- Cavaliere, G., & Taylor, A. M. R. (2008). Bootstrap unit root tests for time series with nonstationary volatility. Econometric Theory, 24(1), 43–71.CrossRefGoogle Scholar
- Cavaliere, G., & Taylor, A. M. R. (2009). Bootstrap M unit root tests. Econometric Reviews, 28(5), 393–421.CrossRefGoogle Scholar
- Cheng, X., & Phillips, P. C. B. (2009). Semiparametric cointegrating rank selection. Econometrics Journal, 12(suppl1), S83–S104.CrossRefGoogle Scholar
- Choi, I. (2015). Almost all about unit roots: Foundations, developments, and applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- Chortareas, G., & Kapetanios, G. (2009). Getting PPP right: Identifying mean-reverting real exchange rates in panels. Journal of Banking and Finance, 33(2), 390–404.CrossRefGoogle Scholar
- Christoffersen, P. F., & Diebold, F. X. (1998). Cointegration and long-horizon fore-casting. Journal of Business & Economic Statistics, 16(4), 450–456.Google Scholar
- Clements, M. P., & Hendry, D. F. (1995). Forecasting in cointegrated systems. Journal of Applied Econometrics, 10(2), 127–146.CrossRefGoogle Scholar
- De Mol, C., Giannone, D., & Reichlin, L. (2008). Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components? Journal of Econometrics, 146, 318–328.CrossRefGoogle Scholar
- Dickey, D. A., & Fuller, W. A. (1979). Distribution of estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431.CrossRefGoogle Scholar
- Diebold, F. X., & Kilian, L. (2000). Unit-root tests are useful for selecting forecasting models. Journal of Business & Economic Statistics, 18(3), 265–273.Google Scholar
- Elliott, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient tests for an autoregressive unit root. Econometrica, 64(4), 813–836.CrossRefGoogle Scholar
- Enders, W. (2008). Applied econometric time series (4th ed.). New Delhi: Wiley.Google Scholar
- Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2005). The generalized dynamic factor model: One-sided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830–840.CrossRefGoogle Scholar
- Franses, P. H., & McAleer, M. (1998). Testing for unit roots and non-linear transformations. Journal of Time Series Analysis, 19(2), 147–164.CrossRefGoogle Scholar
- Friedman, J., Hastie, T., & Tibshirani, R. (2010a). A note on the group lasso and a sparse group lasso (arXiv e-prints No. 1001.0736).Google Scholar
- Friedman, J., Hastie, T., & Tibshirani, R. (2010b). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22.CrossRefGoogle Scholar
- Friedrich, M., Smeekes, S., & Urbain, J.-P. (2018). Autoregressive wild bootstrap inference for nonparametric trends (arXiv e-prints No. 1807.02357).Google Scholar
- Gonçalves, S., & Perron, B. (2014). Bootstrapping factor-augmented regression models. Journal of Econometrics, 182(1), 156–173.CrossRefGoogle Scholar
- Hallin, M., & Liška, R. (2007). Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.CrossRefGoogle Scholar
- Hamilton, J. D. (1994). Time series analysis. Princeton: Princeton University Press.Google Scholar
- Hanck, C. (2009). For which countries did PPP hold? A multiple testing approach. Empirical Economics, 37(1), 93–103.CrossRefGoogle Scholar
- Harvey, D. I., Leybourne, S. J., & Taylor, A. M. R. (2009). Unit root testing in practice: Dealing with uncertainty over the trend and initial condition. Econometric Theory, 25(3), 587–636.CrossRefGoogle Scholar
- Harvey, D. I., Leybourne, S. J., & Taylor, A. M. R. (2012). Testing for unit roots in the presence of uncertainty over both the trend and initial condition. Journal of Econometrics, 169(2), 188–195.CrossRefGoogle Scholar
- Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice. OTexts.Google Scholar
- Johansen, S. (1995a). A statistical analysis of cointegration for i(2) variables. Econometric Theory, 11(1), 25–59.CrossRefGoogle Scholar
- Johansen, S. (1995b). Likelihood-based inference in cointegrated vector autoregressive models. Oxford: Oxford University Press.CrossRefGoogle Scholar
- Justiniano, A., & Primiceri, G. (2008). The time-varying volatility of macroeconomic fluctuations. American Economic Review, 98(3), 604–641.CrossRefGoogle Scholar
- Klaassen, S., Kueck, J., & Spindler, M. (2017). Transformation models in high-dimensions (arXiv e-prints No. 1712.07364).Google Scholar
- Kock, A. B. (2016). Consistent and conservative model selection with the adaptive lasso in stationary and nonstationary autoregressions. Econometric Theory, 32, 243–259.CrossRefGoogle Scholar
- Kramer, W., & Davies, L. (2002). Testing for unit roots in the context of misspecified logarithmic random walks. Economics Letters, 74(3), 313–319.CrossRefGoogle Scholar
- Liang, C., & Schienle, M. (2019). Determination of vector error correction models in high dimensions. Journal of Econometrics, 208(2), 418–441.CrossRefGoogle Scholar
- Liao, Z., & Phillips, P. C. B. (2015). Automated estimation of vector error correction models. Econometric Theory, 31(3), 581–646.CrossRefGoogle Scholar
- Marcellino, M., Stock, J. H., & Watson, M. W. (2006). A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series. Journal of Econometrics, 135(2), 499–526.CrossRefGoogle Scholar
- McCracken, M. W., & Ng, S. (2016). FRED-MD: A monthly database for macroeconomic research. Journal of Business & Economic Statistics, 34(4), 574–589.CrossRefGoogle Scholar
- Meier, L., Van De Geer, S., & Bühlmann, P. (2008). The group lasso for logistic regression. Journal of the Royal Statistical Society: Series B, 70(1), 53–71.CrossRefGoogle Scholar
- Moon, H. R., & Perron, B. (2012). Beyond panel unit root tests: Using multiple testing to determine the non stationarity properties of individual series in a panel. Journal of Econometrics, 169(1), 29–33.CrossRefGoogle Scholar
- Müller, U. K., & Elliott, G. (2003). Tests for unit roots and the initial condition. Econometrica, 71(4), 1269–1286.CrossRefGoogle Scholar
- Ng, S. (2008). A simple test for nonstationarity in mixed panels. Journal of Business and Economic Statistics, 26(1), 113–127.CrossRefGoogle Scholar
- Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues. The Review of Economics and Statistics, 92(4), 1004–1016.CrossRefGoogle Scholar
- Onatski, A., & Wang, C. (2018). Alternative asymptotics for cointegration tests in large VARs. Econometrica, 86(4), 1465–1478.CrossRefGoogle Scholar
- Palm, F. C., Smeekes, S., & Urbain, J.-P. (2008). Bootstrap unit root tests: Comparison and extensions. Journal of Time Series Analysis, 29(1), 371–401.CrossRefGoogle Scholar
- Palm, F. C., Smeekes, S., & Urbain, J.-P. (2011). Cross-sectional dependence robust block bootstrap panel unit root tests. Journal of Econometrics, 163(1), 85–104.CrossRefGoogle Scholar
- Pantula, S. G. (1989). Testing for unit roots in time series data. Econometric Theory, 5(2), 256–271.CrossRefGoogle Scholar
- Pedroni, P., Vogelsang, T. J., Wagner, M., & Westerlund, J. (2015). Nonparametric rank tests for non-stationary panels. Journal of Econometrics, 185(2), 378–391.CrossRefGoogle Scholar
- Rho, Y., & Shao, X. (2019). Bootstrap-assisted unit root testing with piecewise locally stationary errors. Econometric Theory, 35(1), 142–166.CrossRefGoogle Scholar
- Romano, J. P., Shaikh, A. M., & Wolf, M. (2008a). Control of the false discovery rate under dependence using the bootstrap and subsampling. Test, 17(3), 417–442.CrossRefGoogle Scholar
- Romano, J. P., Shaikh, A. M., & Wolf, M. (2008b). Formalized data snooping based on generalized error rates. Econometric Theory, 24(2), 404–447.CrossRefGoogle Scholar
- Romano, J. P., & Wolf, M. (2005). Stepwise multiple testing as formalized data snooping. Econometrica, 73(4), 1237–1282.CrossRefGoogle Scholar
- Schiavoni, C., Palm, F., Smeekes, S., & van den Brakel, J. (2019). A dynamic factor model approach to incorporate big data in state space models for official statistics (arXiv e-print No. 1901.11355).Google Scholar
- Schwert, G. W. (1989). Tests for unit roots: A Monte Carlo investigation. Journal of Business and Economic Statistics, 7(1), 147–159.Google Scholar
- Shao, X. (2010). The dependent wild bootstrap. Journal of the American Statistical Association, 105(489), 218–235.CrossRefGoogle Scholar
- Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. (2013). A sparse-group lasso. Journal of Computational and Graphical Statistics, 22(2), 231–245.CrossRefGoogle Scholar
- Smeekes, S. (2015). Bootstrap sequential tests to determine the order of integration of individual units in a time series panel. Journal of Time Series Analysis, 36(3), 398–415.CrossRefGoogle Scholar
- Smeekes, S., & Taylor, A. M. R. (2012). Bootstrap union tests for unit roots in the presence of nonstationary volatility. Econometric Theory, 28(2), 422–456.CrossRefGoogle Scholar
- Smeekes, S., & Urbain, J.-P. (2014a). A multivariate invariance principle for modified wild bootstrap methods with an application to unit root testing (GSBE Research Memorandum No. RM/14/008). Maastricht University.Google Scholar
- Smeekes, S., & Urbain, J.-P. (2014b). On the applicability of the sieve bootstrap in time series panels. Oxford Bulletin of Economics and Statistics, 76(1), 139–151.CrossRefGoogle Scholar
- Smeekes, S., & Wijler, E. (2018a). An automated approach towards sparse single-equation cointegration modelling (arXiv e-print No. 1809.08889).Google Scholar
- Smeekes, S., & Wijler, E. (2018b). Macroeconomic forecasting using penalized regression methods. International Journal of Forecasting, 34(3), 408–430.CrossRefGoogle Scholar
- Stock, J. H., & Watson, M. W. (2002a). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460), 1167–1179.CrossRefGoogle Scholar
- Stock, J. H., & Watson, M. W. (2002b). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics, 20(2), 147–162.CrossRefGoogle Scholar
- Stock, J. H., & Watson, M. W. (2003). Has the business cycle changed and why? In M. Gertler & K. Rogoff (Eds.), NBER macroeconomics annual 2002 (Chap. 4, Vol. 17, pp. 159–230). Cambridge: MIT Press.Google Scholar
- Stock, J. H., & Watson, M. W. (2012). Generalized shrinkage methods for forecasting using many predictors. Journal of Business & Economic Statistics, 30, 481–493.CrossRefGoogle Scholar
- Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society (Series B), 58(1), 267–288.Google Scholar
- Trapani, L. (2013). On bootstrapping panel factor series. Journal of Econometrics, 172(1), 127–141.CrossRefGoogle Scholar
- Trapletti, A., & Hornik, K. (2018). Tseries: Time series analysis and computational finance. R package version 0.10-46. Retrieved from https://CRAN.R-project.org/package=tseries
- Wilms, I., & Croux, C. (2016). Forecasting using sparse cointegration. International Journal of Forecasting, 32(4), 1256–1267.CrossRefGoogle Scholar
- Zhang, R., Robinson, P., & Yao, Q. (2018). Identifying cointegration by eigenanalysis. Journal of the American Statistical Association, 114, 916–927.CrossRefGoogle Scholar