Advertisement

Creation and Detection of Molecular Schrödinger Cat States: Iodine in Cryogenic Krypton Observed via Four-Wave-Mixing Optics

  • David Picconi
  • Irene BurghardtEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 237)

Abstract

This contribution addresses the experimental observation and  theoretical interpretation of environment-induced decoherence of molecular Schrödinger cat states, as observed for dihalogen molecules embedded in a cryogenic rare gas environment. We specifically address a three-pulse experiment performed on an \(\mathrm {I_2}\)-krypton system,  involving the coherent creation, by two distinct optical pulses, of a vibrational Schrödinger cat state and its observation through a third pulse which induces a Raman scattering signal that reports on the time-evolving coherence.  Full quantum-mechanical simulations of the combined molecule-plus-environment system under the influence of the external fields are reported, making use of advanced wave packet propagation techniques. As a key quantity, a time-evolving subsystem coherence matrix is characterized, and its evolution as a function of the state preparation is discussed. In line with the experiment, it is found that long-lived coherences can be observed, even though the system-bath coupling is comparatively strong. The system–environment interactions fall into a non-Markovian regime and are determined by a few specific environmental modes that strongly interact with the chromophore. A perspective is given on general implications of these observations for molecular systems embedded in a matrix or solvent environment.

Keywords

Schrödinger cat states Decoherence Long-lived coherences Four-wave-mixing Gaussian-based multi-configurational time-dependent Hartree method 

Notes

Acknowledgements

We most gratefully acknowledge discussions with Jeff Cina and Ara Apkarian.

References

  1. 1.
    S.  Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995)Google Scholar
  2. 2.
    D. Segale, M. Karavitis, E. Fredj, V.A. Apkarian, J. Chem. Phys. 122, 111104 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    D. Segale, V.A. Apkarian, J. Chem. Phys. 135, 024203 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    A. Caldeira, A. Leggett, Ann. Phys. 149, 374 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    Y.R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984)Google Scholar
  6. 6.
    D.M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    D. Picconi, J.A. Cina, I. Burghardt, J. Chem. Phys. 150, 064111 (2019a)ADSCrossRefGoogle Scholar
  8. 8.
    D. Picconi, J.A. Cina, I. Burghardt, J. Chem. Phys. 150, 064112 (2019b)ADSCrossRefGoogle Scholar
  9. 9.
    D.  Picconi, I. Burghardt, Faraday Discuss (2019). https://doi.org/10.1039/C9FD00065H
  10. 10.
    V.A. Apkarian, N. Schwentner, Chem. Rev. 99, 1481 (1999)CrossRefGoogle Scholar
  11. 11.
    M. Gühr, M. Bargheer, M. Fushitani, T. Kiljunen, N. Schwentner, Phys. Chem. Chem. Phys. 9, 779 (2007)CrossRefGoogle Scholar
  12. 12.
    A.V. Davis, R. Wester, A.E. Bragg, D.M. Neumark, J. Chem. Phys. 119, 2020 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    A.L. Harris, J.K. Brown, C.B. Harris, Ann. Rev. Phys. Chem. 39, 341 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    A. Materny, C. Lienau, A.H. Zewail, J. Phys. Chem. 100, 18650 (1996)CrossRefGoogle Scholar
  15. 15.
    J. Yang, M. Gühr, X. Shen, R. Li, T. Vecchione, R. Coffee, J. Corbett, A. Fry, N. Hartmann, C. Hast, K. Hegazy, K. Jobe, I. Makasyuk, J. Robinson, M.S. Robinson, S. Vetter, S. Weathersby, C. Yoneda, X. Wang, M. Centurion, Phys. Rev. Lett. 117, 153002 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Glownia, A. Natan, J.P. Cryan, R. Hartsock, M. Kozina, M.P. Minitti, S. Nelson, J. Robinson, T. Sato, T. van Driel, G. Welch, C. Weninger, D. Zhu, P.H. Bucksbaum, Phys. Rev. Lett. 117, 153003 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    M. Gühr, M. Bargheer, N. Schwentner, Phys. Rev. Lett. 91, 085504 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    M. Bargheer, M. Gühr, P. Dietrich, N. Schwentner, Phys. Chem. Chem. Phys. 4, 75 (2002)CrossRefGoogle Scholar
  19. 19.
    M.H. Beck, A. Jäckle, G.A. Worth, H.-D. Meyer, Phys. Rep. 324, 1 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    H.-D. Meyer, F. Gatti, G.A. Worth, Multidimensional Quantum Dynamics: MCTDH Theory and Applications (Wiley-VHC Verlag GmbH & Co., Weinheim, 2009)Google Scholar
  21. 21.
    I. Burghardt, H.-D. Meyer, L.S. Cederbaum, J. Chem. Phys. 111, 2927 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    I. Burghardt, M. Nest, G.A. Worth, J. Chem. Phys. 119, 5364 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    P.A. Kovac, J.A. Cina, J. Chem. Phys. 147, 224112 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    S. Mukamel, C. Ciordas-Ciurdariu, V. Khidekel, Adv. Chem. Phys. 101, 345 (1997)CrossRefGoogle Scholar
  26. 26.
    M.F. Gelin, D.S. Kosov, Chem. Phys. 347, 177 (2008)CrossRefGoogle Scholar
  27. 27.
    I. Burghardt, K. Giri, G.A. Worth, J. Chem. Phys. 129, 174104 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    A. Kenfack, K. Życzkowski, J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    T.A.A. Oliver, R. Soc, Open Sci. 5, 171425 (2018)Google Scholar
  30. 30.
    T.A.A. Oliver, N.H.C. Lewis, G.R. Fleming, Proc. Nat. Acad. Soc. 111, 10061 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    P.M. Kraus, M. Zürch, S.K. Cushing, D.M. Neumark, S.R. Leone, Nat. Rev. Chem. 2, 82 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Physical and Theoretical ChemistryGoethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations