Revealing Correlations Between a System and an Inaccessible Environment

  • Manuel GessnerEmail author
  • Heinz-Peter Breuer
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 237)


How can we detect that our local,  controllable quantum system iscorrelated with some other inaccessible environmental system? The local detection method developed in recent years allows to realize a dynamical witness for correlations without requiring knowledge of or access to the environment that is correlated with the local accessible quantum system. Here, we provide a brief summary of the theoretical method and recent experimental studies with single photons and trapped ions coupled to increasingly complex environments.



This work was funded by the LabEx ENS-ICFP:ANR-10-LABX-0010/ANR-10-IDEX-0001-02 PSL*. M. Gessner would like to thank the organizers of the 684. WE-Heraeus-Seminar “Advances in open systems and fundamental tests of quantum mechanics” for being given the opportunity to present this work.


  1. 1.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)Google Scholar
  2. 2.
    M. Gessner, H.-P. Breuer, A. Buchleitner, The Local Detection Method: Dynamical Detection of Quantum Discord with Local Operations, eds. by F.F. Fanchini, D.O. Soares Pinto, G. Adesso. Lectures on General Quantum Correlations and their Applications (Springer International Publishing, Berlin, 2017), pp. 275–307,;
  3. 3.
    M. Gessner, Dynamics and Characterization of Composite Quantum Systems (Springer International Publishing, Berlin, 2017),
  4. 4.
    E.-M. Laine, J. Piilo, H.-P. Breuer, Witness for initial system-environment correlations in open-system dynamics. Eur. Lett. 92, 60010 (2010),
  5. 5.
    M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  6. 6.
    M.B. Ruskai, Beyond strong subadditivity? improved bounds on the contraction of generalized relative entropy. Rev. Math. Phys. 6, 147 (1994),
  7. 7.
    H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Colloquium: non-markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016),
  8. 8.
    M. Gessner, M. Ramm, T. Pruttivarasin, A. Buchleitner, H.-P. Breuer, H. Häffner, Local detection of quantum correlations with a single trapped ion. Nat. Phys. 10, 105 (2014),
  9. 9.
    M. Gessner, H.-P. Breuer, Detecting nonclassical system-environment correlations by local operations. Phys. Rev. Lett. 107, 180402 (2011),
  10. 10.
    M. Gessner, H.-P. Breuer, Local witness for bipartite quantum discord. Phys. Rev. A 87, 042107 (2013),
  11. 11.
    M. Gessner, M. Ramm, H. Häffner, A. Buchleitner, H.-P. Breuer, Observing a quantum phase transition by measuring a single spin. Eur. Lett. 107, 40005 (2014),
  12. 12.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012),
  13. 13.
    M. Gessner, E.-M. Laine, H.-P. Breuer, J. Piilo, Correlations in quantum states and the local creation of quantum discord. Phys. Rev. A 85, 052122 (2012),
  14. 14.
    D. Girolami, T. Tufarelli, G. Adesso, Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013),
  15. 15.
    V. Madhok, A. Datta, Quantum discord as a resource in quantum communication. Int. J. Mod. Phys. B 27, 1245041 (2013),
  16. 16.
    A. Streltsov, H. Kampermann, D. Bruß, Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106, 160401 (2011).
  17. 17.
    M. Piani, S. Gharibian, G. Adesso, J. Calsamiglia, P. Horodecki, A. Winter, Phys. Rev. Lett. 106, 220403 (2011),
  18. 18.
    T.S. Cubitt, F. Verstraete, W. Dür, J.I. Cirac, Separable states can be used to distribute entanglement. Phys. Rev. Lett. 91, 037902 (2003),
  19. 19.
    A. Streltsov, H. Kampermann, D. Bruß, Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012),
  20. 20.
    T.K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012),
  21. 21.
    A. Fedrizzi, M. Zuppardo, G.G. Gillett, M.A. Broome, M.P. Almeida, M. Paternostro, A.G. White, T. Paterek, Experimental distribution of entanglement with separable carriers. Phys. Rev. Lett. 111, 230504 (2013),
  22. 22.
    C.E. Vollmer, D. Schulze, T. Eberle, V. Händchen, J. Fiurášek, R. Schnabel, Experimental entanglement distribution by separable states. Phys. Rev. Lett. 111, 230505 (2013),
  23. 23.
    C. Peuntinger, V. Chille, L. Mišta Jr., N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, Distributing entanglement with separable states. Phys. Rev. Lett. 111, 230506 (2013),
  24. 24.
    D. Girolami, A.M. Souza, V. Giovannetti, T. Tufarelli, J.G. Filgueiras, R.S. Sarthour, D.O. Soares-Pinto, I.S. Oliveira, G. Adesso, Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014),
  25. 25.
    I. Chuang, M. Nielsen, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)Google Scholar
  26. 26.
    M. Hayashi, Quantum Information Theory (Springer, Berlin, 2017),
  27. 27.
    C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976)zbMATHGoogle Scholar
  28. 28.
    G. Amato, H.-P. Breuer, B. Vacchini, Generalized trace distance approach to quantum non-Markovianity and detection of initial correlations. Phys. Rev. A 98, 012120 (2018),
  29. 29.
    S. Wißmann, B. Leggio, H.-P. Breuer, Detecting initial system-environment correlations: performance of various distance measures for quantum states. Phys. Rev. A 88, 022108 (2013),
  30. 30.
    M. Gessner, H.-P. Breuer, Generic features of the dynamics of complex open quantum systems: statistical approach based on averages over the unitary group. Phys. Rev. E 87, 042128 (2013),
  31. 31.
    B. Collins, P. Śniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264, 773 (2006),
  32. 32.
    M. Žnidarič, C. Pineda, I. García-Mata, Non-Markovian behavior of small and large complex quantum systems. Phys. Rev. Lett. 107, 080404 (2011),
  33. 33.
    M. Gessner, Initial correlations in open quantum systems, Diplomarbeit, Albert-Ludwigs-Universität Freiburg (2011)Google Scholar
  34. 34.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008),
  35. 35.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011)Google Scholar
  36. 36.
    M.A. Caprio, P. Cejnar, F. Iachello, Excited state quantum phase transitions in many-body systems. Ann. Phys. (NY) 323, 1106 (2008),
  37. 37.
    M. Gessner, V.M. Bastidas, T. Brandes, A. Buchleitner, Semiclassical excited-state signatures of quantum phase transitions in spin chains with variable-range interactions. Phys. Rev. B 93, 155153 (2016),
  38. 38.
    A. Abdelrahman, O. Khosravani, M. Gessner, H.-P. Breuer, A. Buchleitner, D.J. Gorman, R. Masuda, T. Pruttivarasin, M. Ramm, P. Schindler, H. Häffner, Local probe of single phonon dynamics in warm ion crystals. Nat. Commun. 8, 15712 (2017),
  39. 39.
    S. Cialdi, A. Smirne, M.G. Paris, S. Olivares, B. Vacchini, Two-step procedure to discriminate discordant from classical correlated or factorized states. Phys. Rev. A 90, 050301(R) (2014),
  40. 40.
    J.-S. Tang, Y.-T. Wang, G. Chen, Y. Zou, C.-F. Li, G.-C. Guo, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, M. Gessner, H.-P. Breuer, Experimental detection of polarization-frequency quantum correlations in a photonic quantum channel by local operations. Optica 2, 1014 (2015),
  41. 41.
    T. Krisnanda, M. Zuppardo, M. Paternostro, T. Paterek, Revealing nonclassicality of inaccessible objects. Phys. Rev. Lett. 119, 120402 (2017),
  42. 42.
    T. Krisnanda, C. Marletto, V. Vedral, M. Paternostro, T. Paterek, Probing quantum features of photosynthetic organisms. npj Quantum Inform. 4, 60 (2018),
  43. 43.
    T. Krisnanda, R. Ganardi, S.-Y. Lee, J. Kim, T. Paterek, Detectingnondecomposability of time evolution via extreme gain of correlations. Phys. Rev. A 98, 052321 (2018),
  44. 44.
    T. Krisnanda, G.Y. Tham, M. Paternostro, T. Paterek, Observable quantum entanglement due to gravity. arXiv:1906.08808

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Département de Physique, École Normale SupérieurePSL Université, CNRSParisFrance
  2. 2.Physikalisches InstitutUniversität FreiburgFreiburgGermany

Personalised recommendations