Advertisement

Revealing Correlations Between a System and an Inaccessible Environment

  • Manuel GessnerEmail author
  • Heinz-Peter Breuer
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 237)

Abstract

How can we detect that our local,  controllable quantum system iscorrelated with some other inaccessible environmental system? The local detection method developed in recent years allows to realize a dynamical witness for correlations without requiring knowledge of or access to the environment that is correlated with the local accessible quantum system. Here, we provide a brief summary of the theoretical method and recent experimental studies with single photons and trapped ions coupled to increasingly complex environments.

Notes

Acknowledgements

This work was funded by the LabEx ENS-ICFP:ANR-10-LABX-0010/ANR-10-IDEX-0001-02 PSL*. M. Gessner would like to thank the organizers of the 684. WE-Heraeus-Seminar “Advances in open systems and fundamental tests of quantum mechanics” for being given the opportunity to present this work.

References

  1. 1.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)Google Scholar
  2. 2.
    M. Gessner, H.-P. Breuer, A. Buchleitner, The Local Detection Method: Dynamical Detection of Quantum Discord with Local Operations, eds. by F.F. Fanchini, D.O. Soares Pinto, G. Adesso. Lectures on General Quantum Correlations and their Applications (Springer International Publishing, Berlin, 2017), pp. 275–307,  https://doi.org/10.1007/978-3-319-53412-1;  https://doi.org/10.1007/978-3-319-53412-1_14
  3. 3.
    M. Gessner, Dynamics and Characterization of Composite Quantum Systems (Springer International Publishing, Berlin, 2017),  https://doi.org/10.1007/978-3-319-44459-8
  4. 4.
    E.-M. Laine, J. Piilo, H.-P. Breuer, Witness for initial system-environment correlations in open-system dynamics. Eur. Lett. 92, 60010 (2010),  https://doi.org/10.1209/0295-5075/92/60010
  5. 5.
    M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  6. 6.
    M.B. Ruskai, Beyond strong subadditivity? improved bounds on the contraction of generalized relative entropy. Rev. Math. Phys. 6, 147 (1994),  https://doi.org/10.1142/S0129055X94000407
  7. 7.
    H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Colloquium: non-markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016),  https://doi.org/10.1103/RevModPhys.88.021002
  8. 8.
    M. Gessner, M. Ramm, T. Pruttivarasin, A. Buchleitner, H.-P. Breuer, H. Häffner, Local detection of quantum correlations with a single trapped ion. Nat. Phys. 10, 105 (2014),  https://doi.org/10.1038/nphys2829
  9. 9.
    M. Gessner, H.-P. Breuer, Detecting nonclassical system-environment correlations by local operations. Phys. Rev. Lett. 107, 180402 (2011),  https://doi.org/10.1103/PhysRevLett.107.180402
  10. 10.
    M. Gessner, H.-P. Breuer, Local witness for bipartite quantum discord. Phys. Rev. A 87, 042107 (2013),  https://doi.org/10.1103/PhysRevA.87.042107
  11. 11.
    M. Gessner, M. Ramm, H. Häffner, A. Buchleitner, H.-P. Breuer, Observing a quantum phase transition by measuring a single spin. Eur. Lett. 107, 40005 (2014),  https://doi.org/10.1209/0295-5075/107/40005
  12. 12.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012),  https://doi.org/10.1103/RevModPhys.84.1655
  13. 13.
    M. Gessner, E.-M. Laine, H.-P. Breuer, J. Piilo, Correlations in quantum states and the local creation of quantum discord. Phys. Rev. A 85, 052122 (2012),  https://doi.org/10.1103/PhysRevA.85.052122
  14. 14.
    D. Girolami, T. Tufarelli, G. Adesso, Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013),  https://doi.org/10.1103/PhysRevLett.110.240402
  15. 15.
    V. Madhok, A. Datta, Quantum discord as a resource in quantum communication. Int. J. Mod. Phys. B 27, 1245041 (2013),  https://doi.org/10.1142/S0217979213450410
  16. 16.
    A. Streltsov, H. Kampermann, D. Bruß, Linking quantum discord to entanglement in a measurement. Phys. Rev. Lett. 106, 160401 (2011).  https://doi.org/10.1103/PhysRevLett.106.160401
  17. 17.
    M. Piani, S. Gharibian, G. Adesso, J. Calsamiglia, P. Horodecki, A. Winter, Phys. Rev. Lett. 106, 220403 (2011),  https://doi.org/10.1103/PhysRevLett.106.220403
  18. 18.
    T.S. Cubitt, F. Verstraete, W. Dür, J.I. Cirac, Separable states can be used to distribute entanglement. Phys. Rev. Lett. 91, 037902 (2003),  https://doi.org/10.1103/PhysRevLett.91.037902
  19. 19.
    A. Streltsov, H. Kampermann, D. Bruß, Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012),  https://doi.org/10.1103/PhysRevLett.108.250501
  20. 20.
    T.K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012),  https://doi.org/10.1103/PhysRevLett.109.070501
  21. 21.
    A. Fedrizzi, M. Zuppardo, G.G. Gillett, M.A. Broome, M.P. Almeida, M. Paternostro, A.G. White, T. Paterek, Experimental distribution of entanglement with separable carriers. Phys. Rev. Lett. 111, 230504 (2013),  https://doi.org/10.1103/PhysRevLett.111.230504
  22. 22.
    C.E. Vollmer, D. Schulze, T. Eberle, V. Händchen, J. Fiurášek, R. Schnabel, Experimental entanglement distribution by separable states. Phys. Rev. Lett. 111, 230505 (2013),  https://doi.org/10.1103/PhysRevLett.111.230505
  23. 23.
    C. Peuntinger, V. Chille, L. Mišta Jr., N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, Distributing entanglement with separable states. Phys. Rev. Lett. 111, 230506 (2013),  https://doi.org/10.1103/PhysRevLett.111.230506
  24. 24.
    D. Girolami, A.M. Souza, V. Giovannetti, T. Tufarelli, J.G. Filgueiras, R.S. Sarthour, D.O. Soares-Pinto, I.S. Oliveira, G. Adesso, Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014),  https://doi.org/10.1103/PhysRevLett.112.210401
  25. 25.
    I. Chuang, M. Nielsen, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)Google Scholar
  26. 26.
    M. Hayashi, Quantum Information Theory (Springer, Berlin, 2017),  https://doi.org/10.1007/978-3-662-49725-8
  27. 27.
    C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976)zbMATHGoogle Scholar
  28. 28.
    G. Amato, H.-P. Breuer, B. Vacchini, Generalized trace distance approach to quantum non-Markovianity and detection of initial correlations. Phys. Rev. A 98, 012120 (2018),  https://doi.org/10.1103/PhysRevA.98.012120
  29. 29.
    S. Wißmann, B. Leggio, H.-P. Breuer, Detecting initial system-environment correlations: performance of various distance measures for quantum states. Phys. Rev. A 88, 022108 (2013),  https://doi.org/10.1103/PhysRevA.88.022108
  30. 30.
    M. Gessner, H.-P. Breuer, Generic features of the dynamics of complex open quantum systems: statistical approach based on averages over the unitary group. Phys. Rev. E 87, 042128 (2013),  https://doi.org/10.1103/PhysRevE.87.042128
  31. 31.
    B. Collins, P. Śniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264, 773 (2006),  https://doi.org/10.1007/s00220-006-1554-3
  32. 32.
    M. Žnidarič, C. Pineda, I. García-Mata, Non-Markovian behavior of small and large complex quantum systems. Phys. Rev. Lett. 107, 080404 (2011),  https://doi.org/10.1103/PhysRevLett.107.080404
  33. 33.
    M. Gessner, Initial correlations in open quantum systems, Diplomarbeit, Albert-Ludwigs-Universität Freiburg (2011)Google Scholar
  34. 34.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008),  https://doi.org/10.1103/RevModPhys.80.517
  35. 35.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011)Google Scholar
  36. 36.
    M.A. Caprio, P. Cejnar, F. Iachello, Excited state quantum phase transitions in many-body systems. Ann. Phys. (NY) 323, 1106 (2008),  https://doi.org/10.1016/j.aop.2007.06.011
  37. 37.
    M. Gessner, V.M. Bastidas, T. Brandes, A. Buchleitner, Semiclassical excited-state signatures of quantum phase transitions in spin chains with variable-range interactions. Phys. Rev. B 93, 155153 (2016),  https://doi.org/10.1103/PhysRevB.93.155153
  38. 38.
    A. Abdelrahman, O. Khosravani, M. Gessner, H.-P. Breuer, A. Buchleitner, D.J. Gorman, R. Masuda, T. Pruttivarasin, M. Ramm, P. Schindler, H. Häffner, Local probe of single phonon dynamics in warm ion crystals. Nat. Commun. 8, 15712 (2017),  https://doi.org/10.1038/ncomms15712
  39. 39.
    S. Cialdi, A. Smirne, M.G. Paris, S. Olivares, B. Vacchini, Two-step procedure to discriminate discordant from classical correlated or factorized states. Phys. Rev. A 90, 050301(R) (2014),  https://doi.org/10.1103/PhysRevA.90.050301
  40. 40.
    J.-S. Tang, Y.-T. Wang, G. Chen, Y. Zou, C.-F. Li, G.-C. Guo, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, M. Gessner, H.-P. Breuer, Experimental detection of polarization-frequency quantum correlations in a photonic quantum channel by local operations. Optica 2, 1014 (2015),  https://doi.org/10.1364/OPTICA.2.001014
  41. 41.
    T. Krisnanda, M. Zuppardo, M. Paternostro, T. Paterek, Revealing nonclassicality of inaccessible objects. Phys. Rev. Lett. 119, 120402 (2017), https://doi.org/10.1103/PhysRevLett.119.120402
  42. 42.
    T. Krisnanda, C. Marletto, V. Vedral, M. Paternostro, T. Paterek, Probing quantum features of photosynthetic organisms. npj Quantum Inform. 4, 60 (2018), https://doi.org/10.1038/s41534-018-0110-2
  43. 43.
    T. Krisnanda, R. Ganardi, S.-Y. Lee, J. Kim, T. Paterek, Detectingnondecomposability of time evolution via extreme gain of correlations. Phys. Rev. A 98, 052321 (2018), https://doi.org/10.1103/PhysRevA.98.052321
  44. 44.
    T. Krisnanda, G.Y. Tham, M. Paternostro, T. Paterek, Observable quantum entanglement due to gravity. arXiv:1906.08808

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Département de Physique, École Normale SupérieurePSL Université, CNRSParisFrance
  2. 2.Physikalisches InstitutUniversität FreiburgFreiburgGermany

Personalised recommendations