Advertisement

Quantum Non-Markovian Collision Models from Colored-Noise Baths

  • Dario Cilluffo
  • Francesco CiccarelloEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 237)

Abstract

A quantum collision model (CM),  also known as repeated interactions model,  can be built from the standard microscopic framework where a system S is coupled to a white-noise bosonic bath under the rotating wave approximation, which typically results in Markovian dynamics. Here, we discuss how to generalize the CM construction to the case of frequency-dependent system–bath coupling, which defines a class of colored-noise baths. This leads to an intrinsically non-Markovian CM, where each ancilla (bath subunit) collides repeatedly with S at different steps. We discuss the illustrative example of an atom in front of a mirror in the regime of non-negligible retardation times.

Notes

Acknowledgements

Fruitful discussions with Susana Huelga, Kimmo Luoma, Gonzalo Manzano, Salvatore Lorenzo, and Tommaso Tufarelli are gratefully acknowledged.

References

  1. 1.
    H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)zbMATHGoogle Scholar
  2. 2.
    A. Rivas, S.F. Huelga, Open Quantum Systems. An Introduction (Springer, Heidelberg, 2011)zbMATHGoogle Scholar
  3. 3.
    J. Rau, Phys. Rev. 129, 1880 (1963)Google Scholar
  4. 4.
    V. Scarani M. Ziman, P. Stelmachovic, N. Gisin, V. Buzek, Phys. Rev. Lett. 88, 097905 (2002)Google Scholar
  5. 5.
    T.A. Brun, Am. J. Phys. 70, 719 (2002)Google Scholar
  6. 6.
    F. Ciccarello, S. Lorenzo, V. Giovannetti, G.M. Palma, in preparation (2019)Google Scholar
  7. 7.
    P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Phys. Rev. X 7, 021003 (2017)Google Scholar
  8. 8.
    I. de Vega, D. Alonso, Rev. Mod. Phys. 89, 15001 (2017)Google Scholar
  9. 9.
    N. Altamirano, P. Corona-Ugalde, R. Mann, M.A. Zych, New J. Phys. 19, 013035 (2017)Google Scholar
  10. 10.
    F. Ciccarello, Quantum Meas. Quantum Metrol. 4, 53 (2017)Google Scholar
  11. 11.
    A.L. Grimsmo, Phys. Rev. Lett. 115, 060402 (2015)Google Scholar
  12. 12.
    S.J. Whalen, A.L. Grimsmo, H.J. Carmichael, Quantum. Sci. Technol. 2, 044008 (2017)Google Scholar
  13. 13.
    H. Pichler, P. Zoller, Phys. Rev. Lett. 116, 093601 (2016)Google Scholar
  14. 14.
    K.A. Fischer, R. Trivedi, V. Ramasesh, I. Siddiqi, J. Vuckovic, Quantum 2, 69 (2018)Google Scholar
  15. 15.
    J.A. Gross, C.M. Caves, G.J. Milburn, J. Combes, Quantum Sci. Technol. 3, 024005 (2018)Google Scholar
  16. 16.
    K. Fischer, J. Phys. Commun 2, 091001 (2018)Google Scholar
  17. 17.
    C.W. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer, Berlin, 2004)zbMATHGoogle Scholar
  18. 18.
    L. Diosi, Phys. Rev. A 85, 034101 (2012)Google Scholar
  19. 19.
    J. Zhang, Y.-X. Liu, R.-B. Wu, K. Jacobs, F. Nori, Phys. Rev. A 87, 032117 (2013)Google Scholar
  20. 20.
    A. Rivas, S.F. Huelga, M.B. Plenio, Rep. Prog. Phys. 77, 094001 (2014)Google Scholar
  21. 21.
    H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016)Google Scholar
  22. 22.
    More in detail, we require \(\Delta t\ll 1/\gamma \) [cf. Eq. (3)], which holds even for a white-noise bath (see Ref. [15] for a detailed discussion). Additionally, \(\Delta t\) must be far shorter than the characteristic time scale of function (10). In the instance in Section 6, this is the time delay \(\tau \)Google Scholar
  23. 23.
    The integral on the left-hand side of Eq. (16) is here viewed as a function of \(t^{\prime }\), which can be approximated by its coarse-grained version in the corresponding interval \([t_{m-1},t_{m}]\) [as done in Eqs. (12) and (13)]Google Scholar
  24. 24.
    In virtue of Eq. (11), the basic spirit of the calculation leading to Eq. (18) is to formally end up with integrals featuring only \(\hat{a}_{\rm in}(t)\) in the integrandGoogle Scholar
  25. 25.
    T. Rybar, S.N. Filippov, M. Ziman, V. Buzek, J. Phys. B 45, 154006 (2012); S.N. Filippov, J. Piilo, S. Maniscalco, M. Ziman, Phys. Rev. A 95, 32111 (2017)Google Scholar
  26. 26.
    B.Q. Baragiola, J. Combes, Phys. Rev. A 96, 023819 (2017)Google Scholar
  27. 27.
    A. Dabrowska, G. Sarbicki, D. Chruscinski, Phys. Rev. A 96, 053819 (2017)Google Scholar
  28. 28.
    Y.L.L. Fang, F. Ciccarello, H.U. Baranger, New J. Phys. 20, 043035 (2018)Google Scholar
  29. 29.
    D. Witthaut, A.S. Sorensen, New J. Phys. 12, 043052 (2010)Google Scholar
  30. 30.
    P.W. Milonni, P.L. Knight, Phys. Rev. A 10, 1096 (1974)Google Scholar
  31. 31.
    R.J. Cook, P.W. Milonni, Phys. Rev. A 35, 5081 (1987)Google Scholar
  32. 32.
    U. Dorner, P. Zoller, Phys. Rev. A 66, 023816 (2002)Google Scholar
  33. 33.
    T. Tufarelli, F. Ciccarello, M.S. Kim, Phys. Rev. A 87, 013820 (2013)Google Scholar
  34. 34.
    T. Tufarelli, M.S. Kim, F. Ciccarello, Phys. Rev. A 90, 012113 (2014); T. Tufarelli, M.S. Kim, F. Ciccarello, Phys. Scrip. T160, 014043 (2014)Google Scholar
  35. 35.
    S. Lorenzo, F. Ciccarello, G.M. Palma, Phys. Rev. A 93, 052111 (2016)Google Scholar
  36. 36.
    S. Kretschmer, K. Luoma, W.T. Strunz, Phys. Rev. A 94, 012106 (2016)Google Scholar
  37. 37.
    S. Lorenzo, F. Ciccarello, G.M. Palma, Phys. Rev. A 96, 032107 (2017)Google Scholar
  38. 38.
    S. Campbell, F. Ciccarello, G.M. Palma, B. Vacchini, Phys. Rev. A 98, 012142 (2018)Google Scholar
  39. 39.
    A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, A. Knorr, Phys. Rev. Lett. 110, 013601 (2013)Google Scholar
  40. 40.
    M. Laakso, M. Pletyukhov, Phys. Rev. Lett. 113, 183601 (2014)Google Scholar
  41. 41.
    T. Ramos, B. Vermersch, P. Hauke, H. Pichler, P. Zoller, Phys. Rev. A 93, 062104 (2016)Google Scholar
  42. 42.
    G. Tabak, H. Mabuchi, EPJ Quantum Technol. 3, 3 (2016)Google Scholar
  43. 43.
    P.-O. Guimond, M. Pletyukhov, H. Pichler, P. Zoller, Quantum Sci. Technol. 2, 044012 (2017)Google Scholar
  44. 44.
    H. Pichler, S. Choi, P. Zoller, M.D. Lukin, Proc. Natl. Acad. Sci. U.S.A. 114, 11362 (2017)Google Scholar
  45. 45.
    L. Guo, A. Grimsmo, A.F. Kockum, M. Pletyukhov, G. Johansson, Phys. Rev. A 95, 053821 (2017)Google Scholar
  46. 46.
    H. Chalabi, E. Waks, Phys. Rev. A 98, 063832 (2018)Google Scholar
  47. 47.
    N. Nemet, A. Carmele, S. Parkins, A. Knorr. arXiv:1902.08328
  48. 48.
    Y.-L.L. Fang, Comput. Phys. Commun. 235, 422 (2019)Google Scholar
  49. 49.
    G. Calajó, Y.-L.L. Fang, H.U. Baranger, F. Ciccarello, Phys. Rev. Lett. 122, 073601 (2019)Google Scholar
  50. 50.
    G. Andersson, B. Suri, L. Guo, T. Aref, P. Delsing. https://doi.org/10.1038/s41567-019-0605-6

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Fisica e Chimica – Emilio SegréUniversità degli Studi di PalermoPalermoItaly
  2. 2.NESTIstituto Nanoscienze-CNRPisaItaly

Personalised recommendations