Advertisement

Collapse Models: Main Properties and the State of Art of the Experimental Tests

  • Matteo CarlessoEmail author
  • Sandro Donadi
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 237)

Abstract

Collapse models represent one of the possible solutions to the measurement problem.  These models modify the Schrödinger dynamics with nonlinear and stochastic terms, which guarantee the localization in space of the wave function avoiding macroscopic superpositions, like that described in Schrödinger’s cat paradox.  The Ghirardi–Rimini–Weber (GRW) and the Continuous Spontaneous Localization (CSL) models are the most studied among the collapse models. Here, we briefly summarize the main features of these models and the advances in their experimental investigation.

Notes

Acknowledgements

MC acknowledges the financial support from the H2020 FET Project TEQ (grant n.766900) and the support from the COST Action QTSpace (CA15220), INFN and the University of Trieste. SD acknowledges the financial support from the Fetzer Franklin Foundation and the support from the COST Action QTSpace (CA15220) and the Frankfurt Institute for Advanced Studies (FIAS). Both the authors are grateful for the support offered by the WE-Heraeus-Stiftung for the WE-Heraeus-Seminars entitled “Advances in open systems and fundamental tests of quantum mechanics”.

References

  1. 1.
    A. Bassi, G.C. Ghirardi, Phys. Rep. 379, 257 (2003), http://www.sciencedirect.com/science/article/pii/S0370157303001030
  2. 2.
    G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986),  https://doi.org/10.1103/PhysRevD.34.470
  3. 3.
    P. Pearle, Phys. Rev. A 39, 2277 (1989),  https://doi.org/10.1103/PhysRevA.39.2277
  4. 4.
    G.C. Ghirardi, P. Pearle, A. Rimini, Phys. Rev. A 42, 78 (1990),  https://doi.org/10.1103/PhysRevA.42.78
  5. 5.
    S.L. Adler, J. Phys. A 40, 2935 (2007), http://stacks.iop.org/1751-8121/40/i=12/a=S03
  6. 6.
    A. Smirne, B. Vacchini, A. Bassi, Phys. Rev. A 90, 062135 (2014),  https://doi.org/10.1103/PhysRevA.90.062135
  7. 7.
    M. Toroš, S. Donadi, A. Bassi, J. Phys. A 49, 355302 (2016), https://iopscience.iop.org/article/10.1088/1751-8113/49/35/355302/meta
  8. 8.
    N. Gisin, Helv. Phys. Acta 62, 363 (1989)MathSciNetGoogle Scholar
  9. 9.
    S.L. Adler, A. Bassi, J. Phys. A 40, 15083 (2007), http://stacks.iop.org/1751-8121/40/i=50/a=012
  10. 10.
    T. Kovachy et al., Nature 528, 530 (2015a),  https://doi.org/10.1038/nature16155
  11. 11.
    S. Eibenberger et al., Phys. Chem. Chem. Phys. 15, 14696 (2013),  https://doi.org/10.1039/C3CP51500A
  12. 12.
    M. Toroš, G. Gasbarri, A. Bassi, Phys. Lett. A 381, 3921 (2017), http://www.sciencedirect.com/science/article/pii/S0375960117309465
  13. 13.
    K. Hornberger, J.E. Sipe, M. Arndt, Phys. Rev. A 70, 053608 (2004),  https://doi.org/10.1103/PhysRevA.70.053608
  14. 14.
    M. Toroš, A. Bassi, J. Phys. A 51, 115302 (2018), http://stacks.iop.org/1751-8121/51/i=11/a=115302
  15. 15.
    K.C. Lee et al., Science 334, 1253 (2011), http://science.sciencemag.org/content/334/6060/1253
  16. 16.
    S. Belli et al., Phys. Rev. A 94, 012108 (2016),  https://doi.org/10.1103/PhysRevA.94.012108
  17. 17.
    T. Kovachy et al., Phys. Rev. Lett. 114, 143004 (2015b),  https://doi.org/10.1103/PhysRevLett.114.143004
  18. 18.
    M. Bilardello, S. Donadi, A. Vinante, A. Bassi, Phys. A 462, 764 (2016), http://www.sciencedirect.com/science/article/pii/S0378437116304095
  19. 19.
    O. Usenko, A. Vinante, G. Wijts, T.H. Oosterkamp, App. Phys. Lett. 98, 133105 (2011),  https://doi.org/10.1063/1.3570628
  20. 20.
    A. Vinante et al., Phys. Rev. Lett. 116, 090402 (2016),  https://doi.org/10.1103/PhysRevLett.116.090402
  21. 21.
    A. Vinante et al., Phys. Rev. Lett. 119, 110401 (2017),  https://doi.org/10.1103/PhysRevLett.119.110401
  22. 22.
    A. Vinante et al. (AURIGA Collaboration), Class. Quantum Gravity 23, S103 (2006), http://stacks.iop.org/0264-9381/23/i=8/a=S14
  23. 23.
    B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 131103 (2016a),  https://doi.org/10.1103/PhysRevLett.116.131103
  24. 24.
    B.P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016b),  https://doi.org/10.1103/PhysRevLett.116.061102
  25. 25.
    M. Armano et al., Phys. Rev. Lett. 116, 231101 (2016),  https://doi.org/10.1103/PhysRevLett.116.231101
  26. 26.
    M. Carlesso, A. Bassi, P. Falferi, A. Vinante, Phys. Rev. D 94, 124036 (2016),  https://doi.org/10.1103/PhysRevD.94.124036
  27. 27.
    B. Helou, B.J.J. Slagmolen, D.E. McClelland, Y. Chen, Phys. Rev. D 95, 084054 (2017),  https://doi.org/10.1103/PhysRevD.95.084054
  28. 28.
    M. Armano et al., Phys. Rev. Lett. 120, 061101 (2018),  https://doi.org/10.1103/PhysRevLett.120.061101
  29. 29.
    C.E. Aalseth et al. (The IGEX Collaboration),  https://doi.org/10.1103/PhysRevC.59.2108 Phys. Rev. C 59, 2108 (1999)
  30. 30.
    K. Piscicchia et al., Entropy 19 (2017), http://www.mdpi.com/1099-4300/19/7/319
  31. 31.
    S.L. Adler, A. Vinante, Phys. Rev. A 97, 052119 (2018),  https://doi.org/10.1103/PhysRevA.97.052119
  32. 32.
    M. Bahrami, Phys. Rev. A 97, 052118 (2018),  https://doi.org/10.1103/PhysRevA.97.052118
  33. 33.
    S. L. Alder, A. Bassi, M. Carlesso, A. Vinante, Phys. Rev. D 99, 103001 (2019), https://journals.asp.org/prd/abstract/10.1103/PhysRevD.99.103001
  34. 34.
    M. Carlesso, M. Paternostro, H. Ulbricht, A. Vinante, A. Bassi, New J. Phys. 20, 083022 (2018a), http://stacks.iop.org/1367-2630/20/i=8/a=083022
  35. 35.
    R. Tumulka, J. Stat. Phys. 125, 821 (2006),  https://doi.org/10.1007/s10955-006-9227-3
  36. 36.
    D.J. Bedingham, Found. Phys. 41, 686 (2011),  https://doi.org/10.1007/s10701-010-9510-7
  37. 37.
    A. Smirne, A. Bassi, Sci. Rep. 5, 12518 (2015),  https://doi.org/10.1038/srep12518
  38. 38.
    J. Nobakht, M. Carlesso, S. Donadi, M. Paternostro, A. Bassi, Phys. Rev. A 98, 042109 (2018),  https://doi.org/10.1103/PhysRevA.98.042109
  39. 39.
    S.L. Adler, A. Bassi, J. Phys. A 41, 395308 (2008), http://stacks.iop.org/1751-8121/41/i=39/a=395308
  40. 40.
    S.L. Adler, A. Bassi, S. Donadi, J. Phys. A 46, 245304 (2013), http://stacks.iop.org/1751-8121/46/i=24/a=245304
  41. 41.
    S. Donadi, D.-A. Deckert, A. Bassi, Ann. Phys. 340, 70 (2014), http://www.sciencedirect.com/science/article/pii/S0003491613002443
  42. 42.
    A. Bassi, S. Donadi, Phys. Lett. A 378, 761 (2014), http://www.sciencedirect.com/science/article/pii/S0375960114000073
  43. 43.
    M. Carlesso, L. Ferialdi, A. Bassi, Eur. Phys. J. D 72, 159 (2018b),  https://doi.org/10.1140/epjd/e2018-90248-x
  44. 44.
    B. Schrinski, B.A. Stickler, K. Hornberger, J. Opt. Soc. Am. B 34, C1 (2017), http://josab.osa.org/abstract.cfm?URI=josab-34-6-C1
  45. 45.
    M. Carlesso, A. Vinante, A. Bassi, Phys. Rev. A 98, 022122 (2018c),  https://doi.org/10.1103/PhysRevA.98.022122
  46. 46.
    B. Collett, P. Pearle, Found. Phys. 33, 1495 (2003),  https://doi.org/10.1023/A:1026048530567
  47. 47.
    D. Goldwater, M. Paternostro, P.F. Barker, Phys. Rev. A 94, 010104(R) (2016),  https://doi.org/10.1103/PhysRevA.94.010104
  48. 48.
    R. Kaltenbaek et al., EPJ Quantum Technol. 3, 5 (2016),  https://doi.org/10.1140/epjqt/s40507-016-0043-7
  49. 49.
    S. McMillen et al., Phys. Rev. A 95, 012132 (2017),  https://doi.org/10.1103/PhysRevA.95.012132
  50. 50.
    R. Mishra, A. Vinante, T.P. Singh, Phys. Rev. A 98, 052121 (2018),  https://doi.org/10.1103/PhysRevA.98.052121

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TriesteTriesteItaly
  2. 2.Istituto Nazionale di Fisica NucleareTriesteItaly
  3. 3.Frankfurt Institute for Advanced Studies (FIAS)Frankfurt am MainGermany

Personalised recommendations