ODRL Policy Modelling and Compliance Checking

  • Marina De Vos
  • Sabrina KirraneEmail author
  • Julian Padget
  • Ken Satoh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11784)


This paper addresses the problem of constructing a policy pipeline that enables compliance checking of business processes against regulatory obligations. Towards this end, we propose an Open Digital Rights Language (ODRL) profile that can be used to capture the semantics of both business policies in the form of sets of required permissions and regulatory requirements in the form of deontic concepts, and present their translation into Answer Set Programming (via the Institutional Action Language (InstAL)) for compliance checking purposes. The result of the compliance checking is either a positive compliance result or an explanation pertaining to the aspects of the policy that are causing the non-compliance. The pipeline is illustrated using two (key) fragments of the General Data Protect Regulation, namely Articles 6 (Lawfulness of processing) and Articles 46 (Transfers subject to appropriate safeguards) and industrially-relevant use cases that involve the specification of sets of permissions that are needed to execute business processes. The core contributions of this paper are the ODRL profile, which is capable of modelling regulatory obligations and business policies, the exercise of modelling elements of GDPR in this semantic formalism, and the operationalisation of the model to demonstrate its capability to support personal data processing compliance checking, and a basis for explaining why the request is deemed compliant or not.



This work was supported in part by the European Union’s Horizon 2020 research and innovation programme under grant 731601 and by JSPS Grant-in-Aid for Scientific Research(S), Grant Number 17H06103. We would like to thank the SPECIAL project consortium for their feedback on the proposed profile.


  1. 1.
    Agarwal, S., Steyskal, S., Antunovic, F., Kirrane, S.: Legislative compliance assessment: framework, model and GDPR instantiation. In: Medina, M., Mitrakas, A., Rannenberg, K., Schweighofer, E., Tsouroulas, N. (eds.) APF 2018. LNCS, vol. 11079, pp. 131–149. Springer, Cham (2018). Scholar
  2. 2.
    Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.Z.: Oasis LegalRuleML. In: ICAIL, vol. 13, pp. 3–12 (2013)Google Scholar
  3. 3.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  4. 4.
    Bartolini, C., Muthuri, R., Santos, C.: Using ontologies to model data protection requirements in workflows. In: JSAI International Symposium on Artificial Intelligence (2015)Google Scholar
  5. 5.
    Boer, A., Hoekstra, R., Winkels, R., Van Engers, T., Willaert, F.: Metalex: legislation in XML. In: Legal Knowledge and Information Systems (Jurix 2002), pp. 1–10 (2002)Google Scholar
  6. 6.
    Boer, A., Winkels, R., Vitali, F.: MetaLex XML and the legal knowledge interchange format. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.) Computable Models of the Law. LNCS (LNAI), vol. 4884, pp. 21–41. Springer, Heidelberg (2008). Scholar
  7. 7.
    Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: the overarching specification of web rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 162–178. Springer, Heidelberg (2010). Scholar
  8. 8.
    Bonatti, P.A. Olmedilla, D.: Rule-based policy representation and reasoning for the semantic web. In: Proceedings of the Third International Summer School Conference on Reasoning Web (2007)Google Scholar
  9. 9.
    Bradshaw, J.M.: Software Agents. MIT Press, Cambridge (1997)Google Scholar
  10. 10.
    Cliffe, O., De Vos, M., Padget, J.: Answer set programming for representing and reasoning about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS (LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007). Scholar
  11. 11.
    Dimyadi, J., Pauwels, P., Amor, R.: Modelling and accessing regulatory knowledge for computer-assisted compliance audit. J. Inf. Technol. Constr. 21, 317–336 (2016)Google Scholar
  12. 12.
    Fornara, N., Colombetti, M.: Operational semantics of an extension of ODRL able to express obligations. In: Belardinelli, F., Argente, E. (eds.) EUMAS/AT -2017. LNCS (LNAI), vol. 10767, pp. 172–186. Springer, Cham (2018). Scholar
  13. 13.
    Fornara, N., Chiappa, A., Colombetti, M.: Using semantic web technologies and production rules for reasoning on obligations and permissions. In: Lujak, M. (ed.) AT 2018. LNCS (LNAI), vol. 11327, pp. 49–63. Springer, Cham (2019). Scholar
  14. 14.
    Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 345–351. Springer, Heidelberg (2011). Scholar
  15. 15.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: preliminary report. CoRR, abs/1405.3694 (2014)Google Scholar
  16. 16.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K.A. (eds.) Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington, USA, 15–19 August 1988 (2 Volumes), pp. 1070–1080. MIT Press (1988). ISBN 0-262-61056-6Google Scholar
  17. 17.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3–4), 365–386 (1991)CrossRefGoogle Scholar
  18. 18.
    Governatori, G., Hashmi, M., Lam, H.-P., Villata, S., Palmirani, M.: Semantic business process regulatory compliance checking using LegalRuleML. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 746–761. Springer, Cham (2016). Scholar
  19. 19.
    Information Commissioner’s Office (ICO) UK: Getting ready for the GDPR (2017). Accessed 1 May 2019
  20. 20.
    Jones, A., Sergot, M.: A formal characterisation of institutionalised power. Logic J. IGPL 4(3), 427–443 (1996)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kagal, L., Finin, T.: A policy language for a pervasive computing environment. In: Proceedings POLICY 2003, IEEE 4th International Workshop on Policies for Distributed Systems and Networks (2003)Google Scholar
  22. 22.
    Lam, H.-P., Hashmi, M.: Enabling reasoning with LegalRuleML. Theor. Pract. Logic Program. 19(1), 1–26 (2019)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Li, T., Balke, T., Vos, M.D., Padget, J.A., Satoh, K.: A model-based approach to the automatic revision of secondary legislation. In: Francesconi, E., Verheij, B. (eds.) International Conference on Artificial Intelligence and Law, ICAIL 2013, Rome, Italy, 10–14 June 2013, pp. 202–206. ACM (2013). ISBN 978-1-4503-2080-1,
  24. 24.
    Microsoft Trust Center: Detailed GDPR Assessment (2017). Accessed 1 May 2019
  25. 25.
    Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and logic programming live together happily ever after? In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 501–514. Springer, Heidelberg (2006). Scholar
  26. 26.
    Nymity: GDPR Compliance Toolkit. Accessed 1 May 2019
  27. 27.
    Padget, J., ElDeen Elakehal, E., Li, T., De Vos, M.: InstAL: an institutional action language. In: Aldewereld, H., Boissier, O., Dignum, V., Noriega, P., Padget, J. (eds.) Social Coordination Frameworks for Social Technical Systems. LGTS, vol. 30, pp. 101–124. Springer, Cham (2016). Scholar
  28. 28.
    Padget, J., Vos, M.D., Page, C.A.: Deontic sensors. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-2018, pp. 475–481. International Joint Conferences on Artificial Intelligence Organization (2018).
  29. 29.
    Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.: LegalRuleML: XML-based rules and norms. In: Olken, F., Palmirani, M., Sottara, D. (eds.) RuleML 2011. LNCS, vol. 7018, pp. 298–312. Springer, Heidelberg (2011). Scholar
  30. 30.
    Panasiuk, O., Steyskal, S., Havur, G., Fensel, A., Kirrane, S.: Modeling and reasoning over data licenses. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 218–222. Springer, Cham (2018). Scholar
  31. 31.
    Pandit, H.J., Fatema, K., O’Sullivan, D., Lewis, D.: GDPRtEXT - GDPR as a linked data resource. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 481–495. Springer, Cham (2018). Scholar
  32. 32.
    Steyskal, S., Kirrane, S.: If you can’t enforce it, contract it: enforceability in policy-driven (linked) data markets. In: SEMANTiCS (Posters & Demos) (2015)Google Scholar
  33. 33.
    Steyskal, S., Polleres, A.: Defining expressive access policies for linked data using the ODRL ontology 2.0. In: Proceedings of the 10th International Conference on Semantic Systems (2014)Google Scholar
  34. 34.
    von Wright, G.: Deontic logic. Mind 60(237), 1–15 (1951). ISSN 00264423, 14602113CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marina De Vos
    • 1
  • Sabrina Kirrane
    • 2
    Email author
  • Julian Padget
    • 1
  • Ken Satoh
    • 3
  1. 1.University of BathBathUK
  2. 2.Vienna University of Economics and BusinessViennaAustria
  3. 3.National Institute of Informatics and SokendaiTokyoJapan

Personalised recommendations