Advertisement

Reasoning on \(\textit{DL-Lite}_\mathcal{R}\) with Defeasibility in ASP

  • Loris BozzatoEmail author
  • Thomas Eiter
  • Luciano Serafini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11784)

Abstract

Reasoning on defeasible knowledge is a topic of interest in the area of description logics, as it is related to the need of representing exceptional instances in knowledge bases. In this direction, in our previous works we presented a framework for representing (contextualized) OWL RL knowledge bases with a notion of justified exceptions on defeasible axioms: reasoning in such framework is realized by a translation into ASP programs. The resulting reasoning process for OWL RL, however, introduces a complex encoding in order to capture reasoning on the negative information needed for reasoning on exceptions. In this paper, we apply the justified exception approach to knowledge bases in \(\textit{DL-Lite}_\mathcal{R}\), i.e. the language underlying OWL QL. We provide a definition for \(\textit{DL-Lite}_\mathcal{R}\) knowledge bases with defeasible axioms and study their semantic and computational properties. The limited form of \(\textit{DL-Lite}_\mathcal{R}\) axioms allows us to formulate a simpler encoding into ASP programs, where reasoning on negative information is managed by direct rules. The resulting materialization method gives rise to a complete reasoning procedure for instance checking in \(\textit{DL-Lite}_\mathcal{R}\) with defeasible axioms.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  2. 2.
    Bonatti, P.A., Faella, M., Petrova, I., Sauro, L.: A new semantics for overriding in description logics. Artif. Intell. 222, 1–48 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonatti, P.A., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs. J. Artif. Intell. Research 42, 719–764 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In: KR 2006, pp. 400–410. AAAI Press (2006)Google Scholar
  5. 5.
    Bozzato, L., Eiter, T., Serafini, L.: Contextualized knowledge repositories with justifiable exceptions. In: DL2014. CEUR-WP, vol. 1193, pp. 112–123 (2014). CEUR-WS.org
  6. 6.
    Bozzato, L., Eiter, T., Serafini, L.: Enhancing context knowledge repositories with justifiable exceptions. Artif. Intell. 257, 72–126 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bozzato, L., Homola, M., Serafini, L.: Towards more effective tableaux reasoning for CKR. In: DL2012, CEUR-WP, vol. 846, pp. 114–124 (2012). CEUR-WS.org
  8. 8.
    Bozzato, L., Serafini, L.: Materialization calculus for contexts in the semantic web. In: DL2013, CEUR-WP, vol. 1014, pp. 552–572 (2013). CEUR-WS.org
  9. 9.
    Bozzato, L., Serafini, L., Eiter, T.: Reasoning with justifiable exceptions in contextual hierarchies. In: KR 2018, pp. 329–338. AAAI Press (2018)Google Scholar
  10. 10.
    Britz, K., Varzinczak, I.: Introducing role defeasibility in description logics. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 174–189. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48758-8_12CrossRefzbMATHGoogle Scholar
  11. 11.
    de Bruijn, J., Eiter, T., Tompits, H.: Embedding approaches to combining rules and ontologies into autoepistemic logic. In: KR 2008, pp. 485–495. AAAI Press (2008)Google Scholar
  12. 12.
    Cadoli, M., Lenzerini, M.: The complexity of propositional closed world reasoning and circumscription. J. Comput. Syst. Sci. 48(2), 255–310 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 77–90. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15675-5_9CrossRefzbMATHGoogle Scholar
  15. 15.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. Artif. Intell. 172(12–13), 1495–1539 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9, 365–385 (1991)CrossRefGoogle Scholar
  17. 17.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about typicality in low complexity DLs: the logics \(\cal{EL}^{\bot }T_{min}\) and DL-Lite\(_{c}T_{min}\). In: Walsh, T. (ed.) IJCAI 2011, pp. 894–899. IJCAI/AAAI (2011)Google Scholar
  18. 18.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A non-monotonic description logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Krötzsch, M.: Efficient inferencing for OWL EL. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 234–246. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15675-5_21CrossRefGoogle Scholar
  20. 20.
    Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15918-3_9CrossRefGoogle Scholar
  21. 21.
    Motik, B., Fokoue, A., Horrocks, I., Wu, Z., Lutz, C., Grau, B.C.: OWL 2 web ontology language profiles. In: W3C Recommendation, W3C, October 2009Google Scholar
  22. 22.
    Pensel, M., Turhan, A.: Reasoning in the defeasible description logic \(\cal{EL}_{\bot }\) - computing standard inferences under rational and relevant semantics. Int. J. Approx. Reasoning 103, 28–70 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Serafini, L., Homola, M.: Contextualized knowledge repositories for the semantic web. J. Web Semant. 12, 64–87 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fondazione Bruno KesslerTrentoItaly
  2. 2.Institute of Logic and ComputationTechnische Universität WienViennaAustria

Personalised recommendations