Advertisement

Detecting “Slippery Slope” and Other Argumentative Stances of Opposition Using Tree Kernels in Monologic Discourse

  • Davide LigaEmail author
  • Monica PalmiraniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11784)

Abstract

The aim of this study is to propose an innovative methodology to classify argumentative stances in a monologic argumentative context. Particularly, the proposed approach shows that Tree Kernels can be used in combination with traditional textual vectorization to discriminate between different stances of opposition without the need of extracting highly engineered features. This can be useful in many Argument Mining sub-tasks. In particular, this work explores the possibility of classifying opposition stances by training multiple classifiers to reach different degrees of granularity. Noticeably, discriminating support and opposition stances can be particularly useful when trying to detect Argument Schemes, one of the most challenging sub-task in the Argument Mining pipeline. In this sense, the approach can be also considered as an attempt to classify stances of opposition that are related to specific Argument Schemes.

Keywords

Argument Mining Tree Kernels Argument Schemes 

References

  1. 1.
    Athan, T., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: LegalRuleML: design principles and foundations. In: Faber, W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 151–188. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21768-0_6CrossRefGoogle Scholar
  2. 2.
    Cabrio, E., Villata, S.: Five years of argument mining: a data-driven analysis. In: IJCAI, pp. 5427–5433 (2018)Google Scholar
  3. 3.
    Croce, D., Moschitti, A., Basili, R.: Structured lexical similarity via convolution kernels on dependency trees. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1034–1046. Association for Computational Linguistics (2011)Google Scholar
  4. 4.
    Feng, V.W., Hirst, G.: Classifying arguments by scheme. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 987–996 (2011)Google Scholar
  5. 5.
    Filice, S., Castellucci, G., Croce, D., Basili, R.: KeLP: a kernel-based learning platform for natural language processing. In: Proceedings of ACL-IJCNLP 2015 System Demonstrations, pp. 19–24 (2015)Google Scholar
  6. 6.
    Filice, S., Moschitti, A.: Learning pairwise patterns in community question answering. Intelligenza Artificiale 12(2), 49–65 (2018)CrossRefGoogle Scholar
  7. 7.
    Hovy, D., et al.: Identifying metaphorical word use with tree kernels. In: Proceedings of the First Workshop on Metaphor in NLP, pp. 52–57 (2013)Google Scholar
  8. 8.
    Lawrence, J., Reed, C.: Argument mining using argumentation scheme structures. In: COMMA, pp. 379–390 (2016)Google Scholar
  9. 9.
    Liga, D.: Argumentative evidences classification and argument scheme detection using tree kernels. In: Proceedings of the 6th Workshop on Argument Mining, pp. 92–97 (2019)Google Scholar
  10. 10.
    Lippi, M., Lagioia, F., Contissa, G., Sartor, G., Torroni, P.: Claim detection in judgments of the EU court of justice. In: Pagallo, U., Palmirani, M., Casanovas, P., Sartor, G., Villata, S. (eds.) AICOL 2015-2017. LNCS (LNAI), vol. 10791, pp. 513–527. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00178-0_35CrossRefGoogle Scholar
  11. 11.
    Lippi, M., et al.: Claudette: an automated detector of potentially unfair clauses in online terms of service. Artif. Intell. Law 1, 1–23 (2018)Google Scholar
  12. 12.
    Lippi, M., Torroni, P.: Argument mining: a machine learning perspective. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2015. LNCS (LNAI), vol. 9524, pp. 163–176. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28460-6_10CrossRefGoogle Scholar
  13. 13.
    Lippi, M., Torroni, P.: Margot: a web server for argumentation mining. Expert Syst. Appl. 65, 292–303 (2016)CrossRefGoogle Scholar
  14. 14.
    Mayer, T., Cabrio, E., Lippi, M., Torroni, P., Villata, S.: Argument mining on clinical trials. In: Computational Models of Argument: Proceedings of COMMA 2018, vol. 305, p. 137 (2018)Google Scholar
  15. 15.
    Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006).  https://doi.org/10.1007/11871842_32CrossRefGoogle Scholar
  16. 16.
    Moschitti, A., Pighin, D., Basili, R.: Tree kernels for semantic role labeling. Comput. Linguist. 34(2), 193–224 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nguyen, T.V.T., Moschitti, A., Riccardi, G.: Convolution kernels on constituent, dependency and sequential structures for relation extraction. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3, pp. 1378–1387. Association for Computational Linguistics (2009)Google Scholar
  18. 18.
    Rooney, N., Wang, H., Browne, F.: Applying kernel methods to argumentation mining. In: Twenty-Fifth International FLAIRS Conference (2012)Google Scholar
  19. 19.
    Shawe-Taylor, J., Cristianini, N., et al.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  20. 20.
    Walton, D.: The basic slippery slope argument. Informal Logic 35(3), 273–311 (2015)CrossRefGoogle Scholar
  21. 21.
    Walton, D., Macagno, F.: A classification system for argumentation schemes. Argument Comput. 6(3), 219–245 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CIRSFID, Alma Mater Studiorum - University of BolognaBolognaItaly

Personalised recommendations