Advertisement

Adding Constraint Tables to the DMN Standard: Preliminary Results

  • Marjolein DeryckEmail author
  • Bram Aerts
  • Joost Vennekens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11784)

Abstract

The DMN standard allows users to build declarative models of their decision knowledge. The standard aims at being simple enough to allow business users to construct these models themselves, without help from IT staff. To this end, it combines simple decision tables with a clear visual notation. However, for real-life applications, DMN sometimes proves too restrictive. In this paper, we develop an extension to DMN’s decision table notation, which allows more knowledge to be expressed, while retaining the simplicity of DMN. We demonstrate our new notation on a real-life case study on product design.

Keywords

Decision Model and Notation First Order Logic Constraint modelling 

References

  1. 1.
    OMG: Decision Model and Notation 1.2 (2018)Google Scholar
  2. 2.
    Aerts, B., Vennekens, J.: Application of logic-based methods to machine component design. In: Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018) (2018)Google Scholar
  3. 3.
    Calvanese, D., Dumas, M., Laurson, Ü., Maggi, F.M., Montali, M., Teinemaa, I.: Semantics and analysis of DMN decision tables. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 217–233. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_13CrossRefGoogle Scholar
  4. 4.
    De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate logic as a modeling language: the IDP system, pp. 279–323 (2018)Google Scholar
  5. 5.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24605-3_37CrossRefGoogle Scholar
  6. 6.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78800-3_24CrossRefGoogle Scholar
  7. 7.
    Feldman, J.: Representing and solving rule-based decision models with constraint solvers. In: Olken, F., Palmirani, M., Sottara, D. (eds.) RuleML 2011. LNCS, vol. 7018, pp. 208–221. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24908-2_23CrossRefGoogle Scholar
  8. 8.
    Calvanese, D., Dumas, M., Maggi, F.M., Montali, M.: Semantic DMN: formalizing decision models with domain knowledge. In: Costantini, S., Franconi, E., Van Woensel, W., Kontchakov, R., Sadri, F., Roman, D. (eds.) RuleML+RR 2017. LNCS, vol. 10364, pp. 70–86. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61252-2_6CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceKU LeuvenSint-Katelijne-WaverBelgium

Personalised recommendations