Advertisement

Shallow Water Waves

  • Achim FeldmeierEmail author
Chapter
  • 44 Downloads
Part of the Theoretical and Mathematical Physics book series (TMP)

Abstract

In shallow water waves, the water is shallow with respect to the wave, in the sense that the wavelength is (much) larger than the water depth, and the whole body of water, in every depth, is approximately equally affected by the wave. If the wave has sufficient lateral extent, the surfaces of equal wave phase (wavefronts) are vertical planes.

References

  1. Abramowitz, M., and I.A. Stegun. 1964. Handbook of mathematical functions. New York: Dover.zbMATHGoogle Scholar
  2. Ahlfors, L.V. 1966. Complex analysis, 2nd ed. New York: McGraw-Hill.zbMATHGoogle Scholar
  3. Airy, G.B. 1845. Tides and waves. In Encyclopaedia metropolitana, vol. 5, 241. London.Google Scholar
  4. Aldersey-Williams, H. 2016. The tide: The science and stories behind the greatest force on Earth. New York: W. W. Norton & Company.Google Scholar
  5. Barcilon, V., and D.R. MacAyeal. 1993. Steady flow of a viscous ice stream across a no-slip/free-slip transition at the bed. Journal of Glaciology 39: 167.ADSCrossRefGoogle Scholar
  6. Carrier, G.F., and H.P. Greenspan. 1958. Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics 4: 97.ADSMathSciNetCrossRefGoogle Scholar
  7. Cartwright, D.E. 1999. Tides – A scientific history. Cambridge: Cambridge University Press.Google Scholar
  8. Chambers, Ll.G. 1954. Diffraction by a half-plane. Proceedings of the Edinburgh Mathematical Society 10: 92.Google Scholar
  9. Chambers, Ll.G. 1964. Long waves on a rotating Earth in the presence of a semi-infinite barrier. Proceedings of the Edinburgh Mathematical Society 14: 25.Google Scholar
  10. Copson, E.T. 1946. On an integral equation arising in the theory of diffraction. Quarterly Journal of Mathematics 17: 19.ADSMathSciNetCrossRefGoogle Scholar
  11. Crapper, G.D. 1984. Introduction to water waves. Hemel: Ellis Horwood Ltd.zbMATHGoogle Scholar
  12. Crease, J. 1956. Long waves on a rotating Earth in the presence of a semi-infinite barrier. Journal of Fluid Mechanics 1: 86.ADSMathSciNetCrossRefGoogle Scholar
  13. Crease, J. 1958. The propagation of long waves into a semi-infinite channel in a rotating system. Journal of Fluid Mechanics 4: 306.ADSMathSciNetCrossRefGoogle Scholar
  14. Crighton, D.G., and F.G. Leppington. 1974. Radiation properties of the semi-infinite vortex sheet: The initial-value problem. Journal of Fluid Mechanics 64: 393.ADSCrossRefGoogle Scholar
  15. Darwin, G.H. 1902. Tides. Encyclopaedia Britannica, 9th ed. https://www.1902encyclopedia.com/T/TID/tides.html.
  16. Erdélyi, A. (ed.). 1954. Tables of integral transforms, vol. II. New York: McGraw-Hill.zbMATHGoogle Scholar
  17. Feldmeier, A. 2013. Theoretische Mechanik. Berlin: Springer.CrossRefGoogle Scholar
  18. Flügge, S. (ed.). 1961. Crystal optics, diffraction, encyclopedia of physics, vol. XXV/1. Berlin: Springer.Google Scholar
  19. Gjevik, B. 2009. Flo og fjære langs kysten av Norge og Svalbard (in Norwegian). Oslo: Farleia Forlag.Google Scholar
  20. Grossman, N. 2005. A \(C^\infty \) Lagrange inversion theorem. The American Mathematical Monthly 112: 512.MathSciNetzbMATHGoogle Scholar
  21. Hedstrom, G.W. 1979. Nonreflecting boundary conditions for nonlinear hyperbolic systems. Journal of Computational Physics 30: 222.ADSMathSciNetCrossRefGoogle Scholar
  22. Hibberd, S., and D.H. Peregrine. 1979. Surf and run-up on a beach: A uniform bore. Journal of Fluid Mechanics 95: 323.ADSMathSciNetCrossRefGoogle Scholar
  23. Hutter, K., and V.O.S. Olunloyo. 1980. On the distribution of stress and velocity in an ice strip, which is partly sliding over and partly adhering to its bed, by using a Newtonian viscous approximation. Proceedings of the Royal Society of London A 373: 385.ADSMathSciNetzbMATHGoogle Scholar
  24. Hutter, K., Y. Wang, and I.P. Chubarenko. 2012. Physics of lakes: Lakes as oscillators, vol. 2. Berlin: Springer.Google Scholar
  25. Kapoulitsas, G.M. 1977. Diffraction of long waves by a semi-infinite vertical barrier on a rotating Earth. International Journal of Theoretical Physics 16: 763.ADSCrossRefGoogle Scholar
  26. Karp, S.N. 1950. Wiener-Hopf techniques and mixed boundary value problems. Communications on Pure and Applied Mathematics 3: 201.MathSciNetCrossRefGoogle Scholar
  27. Keller, H., D. Levine, and G. Whitham. 1960. Motion of a bore over a sloping beach. Journal of Fluid Mechanics 7: 302.ADSMathSciNetCrossRefGoogle Scholar
  28. Lamb, H. 1932. Hydrodynamics. Cambridge: Cambridge University Press; New York: Dover (1945).Google Scholar
  29. LeBlond, P.H., and L.A. Mysak. 1978. Waves in the ocean. Elsevier oceanography series 20. Amsterdam: Elsevier Scientific Publishing Company.Google Scholar
  30. Le Lacheur, E.A. 1924. Tidal currents in the open sea: Subsurface tidal currents at Nantucket Shoals Light Vessel. Geographical Review 14: 282.CrossRefGoogle Scholar
  31. Manton, M.J., L.A. Mysak, and R.E. McGorman. 1970. The diffraction of internal waves by a semi-infinite barrier. Journal of Fluid Mechanics 43: 165.ADSCrossRefGoogle Scholar
  32. Markushevich, A.I. 1965. Theory of functions of a complex variable, vol. I. Englewood Cliffs: Prentice-Hall.Google Scholar
  33. McCowan, J. 1892. On the theory of long waves and its application to the tidal phenomena of rivers and estuaries. Philosophical Magazine Series 5, 33: 250.Google Scholar
  34. Mortimer, C.H. 1975. Environmental status of the Lake Michigan region. Vol. 2. Physical limnology of Lake Michigan. Part 1. Physical characteristics of Lake Michigan and its responses to applied forces, ANL/ES-40 Vol. 2 Environmental and Earth Sciences, National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia. Available as pdf-file.Google Scholar
  35. Noble, B. 1958. The Wiener-Hopf technique. London: Pergamon Press.zbMATHGoogle Scholar
  36. Proudman, J. 1953. Dynamical oceanography. London: Methuen & Co.Google Scholar
  37. Proudman, J. 1955. The propagation of tide and surge in an estuary. Proceedings of the Royal Society of London A 231: 8.ADSMathSciNetCrossRefGoogle Scholar
  38. Proudman, J. 1957. Oscillations of tide and surge in an estuary of finite length. Journal of Fluid Mechanics 2: 371.ADSMathSciNetCrossRefGoogle Scholar
  39. Proudman, J. 1958. On the series that represent tides and surges in an estuary. Journal of Fluid Mechanics 3: 411.ADSMathSciNetCrossRefGoogle Scholar
  40. Proudman, J., and A.T. Doodson. 1924. The principal constituent of the tides of the North Sea. Philosophical Transactions of the Royal Society of London A 224: 185.ADSCrossRefGoogle Scholar
  41. Rayleigh, Lord. 1914. On the theory of long waves and bores. Proceedings of the Royal Society of London A 90: 324.ADSzbMATHGoogle Scholar
  42. Schmitz, H.P. 1965. Modellrechnungen zur deep water surge Entwicklung – das external surge Problem. Deutsche Hydrographische Zeitschrift 18: 49.ADSCrossRefGoogle Scholar
  43. Schwinger, J.S. 1946. Fourier transform solution of integral equations. M. I. T. Radiation Laboratory Report.Google Scholar
  44. Sedov, L.I. 1946. The movement of air in a strong explosion. Doklady Akademii nauk SSSR 52: 17.Google Scholar
  45. Shen, M.C., and R.E. Meyer. 1963. Climb of a bore on a beach. III. Run-up. Journal of Fluid Mechanics 16: 113Google Scholar
  46. Sommerfeld, A. 1896. Mathematische Theorie der Diffraction. Mathematische Annalen 47: 317.MathSciNetCrossRefGoogle Scholar
  47. Stoker, J.J. 1948. The formation of breakers and bores. The theory of nonlinear wave propagation in shallow water and open channels. Communications on Pure and Applied Mathematics 1: 1.MathSciNetCrossRefGoogle Scholar
  48. Stoker, J.J. 1957. Water waves. The mathematical theory with applications. New York: Interscience Publishers.zbMATHGoogle Scholar
  49. Taylor, G.I. 1922. Tidal oscillations in gulfs and rectangular basins. Proceedings of the London Mathematical Society, Series 2, 20: 148.Google Scholar
  50. Taylor, G.I. 1950. The formation of a blast wave by a very intense explosion. Proceedings of the Royal Society of London A 201: 159.ADSCrossRefGoogle Scholar
  51. Thorade, H. 1941. Ebbe und Flut. Ihre Entstehung und ihre Wandlungen. Berlin: Springer.Google Scholar
  52. Tuck, E.O., and L.-S. Hwang. 1972. Long wave generation on a sloping beach. Journal of Fluid Mechanics 51: 449.ADSCrossRefGoogle Scholar
  53. Wehausen, J.V., and E.V. Laitone. 1960. Surface waves. In Handbuch der Physik = Encyclopedia of Physics, vol. 3/9, Strömungsmechanik 3, ed. S. Flügge and C. Truesdell, 446. Berlin: Springer.Google Scholar
  54. Whewell, W. 1836. Researches on the tides. Sixth series. On the results of an extensive system of tide observations made on the coasts of Europe and America in June 1835. Philosophical Transactions of the Royal Society of London 126: 289.Google Scholar
  55. Whewell, W. 1848. The Bakerian Lecture. – Researches on the tides. Thirteenth series. On the tides of the pacific, and on the diurnal inequality. Philosophical Transactions of the Royal Society of London 138: 1.Google Scholar
  56. Wiener, N., and E. Hopf. 1931. Über eine Klasse singulärer Integralgleichungen. Sitzungsberichte der preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse XXXI: 696.Google Scholar
  57. Williams, W.E. 1964. Note on the scattering of long waves in a rotating system. Journal of Fluid Mechanics 20: 115.ADSMathSciNetCrossRefGoogle Scholar
  58. Zel’dovich, Ya.B., and Yu.P. Raizer. 1967. Physics of shock waves and high-temperature hydrodynamic phenomena, vol. 2. New York: Academic Press; Mineola: Dover (2002).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Physik und AstronomieUniversität PotsdamPotsdamGermany

Personalised recommendations