Vortices, Corner Flow, and Flow Past Plates

  • Achim FeldmeierEmail author
Part of the Theoretical and Mathematical Physics book series (TMP)


Vortices are among the most fascinating features of fluid dynamics: the flow bends around ‘on itself,’ with the possibility of becoming self-regulatory. This is indeed the case in the turbulent cascade of ever smaller eddies  whirling in larger eddies, which has universal properties on all lengthscales. We do not deal with turbulence in this book, but consider in the present chapter certain cases of single and multiple vortices, and certain related structures.


  1. Abramowitz, M., and I.A. Stegun. 1964. Handbook of mathematical functions. New York: Dover.zbMATHGoogle Scholar
  2. Chorin, A.J., and J.E. Marsden. 1990. A mathematical introduction to fluid mechanics. New York: Springer.CrossRefGoogle Scholar
  3. Davis, A.M.J., and M.E. O’Neill. 1977. Separation in a slow linear shear flow past a cylinder and a plane. Journal of Fluid Mechanics 81: 551.ADSMathSciNetCrossRefGoogle Scholar
  4. Dean, W.R., and P.E. Montagnon. 1949. On the steady motion of viscous liquid in a corner. Mathematical Proceedings of the Cambridge Philosophical Society 45: 389.MathSciNetCrossRefGoogle Scholar
  5. Dolaptschiew, Bl. 1937. Über die Stabilität der Kármánschen Wirbelstraße. Zeitschrift für angewandte Mathematik und Mechanik 17: 313.ADSCrossRefGoogle Scholar
  6. Domm, U. 1956. Über die Wirbelstraßen von geringster Intensität. Zeitschrift für angewandte Mathematik und Mechanik 36: 367.Google Scholar
  7. Drazin, P.G., and W.H. Reid. 1981. Hydrodynamic stability. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  8. Erdélyi, A. (ed.). 1954. Tables of integral transforms, vol. II. New York: McGraw-Hill.zbMATHGoogle Scholar
  9. Fraenkel, L.E. 1961. On corner eddies in plane inviscid shear flow. Journal of Fluid Mechanics 11: 400.ADSMathSciNetCrossRefGoogle Scholar
  10. Heisenberg, W. 1924. Über Stabilität und Turbulenz von Flüssigkeitsströmen. Annalen der Physik IV. Folge 74: 577.Google Scholar
  11. Jeffreys, H. 1924. The Earth. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  12. Kármán, Th., von. 1911. Ueber den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1911: 509.Google Scholar
  13. Kotschin, N.J., I.A. Kibel, and N.W. Rose. 1954. Theoretische Hydromechanik, vol. I. Berlin: Akademie-Verlag.zbMATHGoogle Scholar
  14. Kutta, W.M. 1902. Auftriebskräfte in strömenden Flüssigkeiten. Illustrierte aeronautische Mitteilungen 6: 133.Google Scholar
  15. Lamb, H. 1932. Hydrodynamics. Cambridge: Cambridge University; New York: Dover (1945).Google Scholar
  16. Landau, L.D., and E.M. Lifshitz. 1987. Fluid mechanics, Course of theoretical physics, vol. 6, 2nd ed. Amsterdam: Elsevier Butterworth-Heinemann.Google Scholar
  17. Lüst, R. 1952. Die Entwicklung einer um einen Zentralkörper rotierenden Gasmasse. Zeitschrift für Naturforschung A 7: 87.ADSCrossRefGoogle Scholar
  18. Lynden-Bell, D., and J.E. Pringle. 1974. The evolution of viscous discs and the origin of the nebular variables. Monthly Notices of the Royal Astronomical Society 168: 603.ADSCrossRefGoogle Scholar
  19. Meleshko, V.V., and H. Aref. 2007. A bibliography of vortex dynamics 1858–1956. Advances in Applied Mechanics 41: 197.CrossRefGoogle Scholar
  20. Milne-Thomson, L.M. 1940. Hydrodynamical images. Mathematical Proceedings of the Cambridge Philosophical Society 36: 246.MathSciNetCrossRefGoogle Scholar
  21. Milne-Thomson, L.M. 1968. Theoretical hydrodynamics, 5th ed. London: Macmillan; New York: Dover (1996).Google Scholar
  22. Moffatt, H.K. 1964. Viscous and resistive eddies near a sharp corner. Journal of Fluid Mechanics 18: 1.ADSCrossRefGoogle Scholar
  23. Pringle, J.E. 1981. Accretion discs in astrophysics. Annual Review of Astronomy and Astrophysics 19: 137.ADSCrossRefGoogle Scholar
  24. Rayleigh, Lord. 1911. Hydrodynamical notes. Philosophical Magazine Series 6, 21: 177.Google Scholar
  25. Reynolds, O. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philosophical Transactions of the Royal Society of London 174: 935.ADSCrossRefGoogle Scholar
  26. Saffman, P.G. 1995. Vortex dynamics. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  27. Schmieden, C. 1936. Zur Theorie der Kármánschen Wirbelstraße. Ingenieur-Archiv = Archive of Applied Mechanics 7: 215.Google Scholar
  28. Schubert, G. 1967. Viscous flow near a cusped corner. Journal of Fluid Mechanics 27: 647.ADSCrossRefGoogle Scholar
  29. Tritton, D.J. 1988. Physical fluid dynamics. Oxford: Oxford University Press.zbMATHGoogle Scholar
  30. Yih, C.-S. 1959. Two solutions for inviscid rotational flow with corner eddies. Journal of Fluid Mechanics 5: 36.ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Physik und AstronomieUniversität PotsdamPotsdamGermany

Personalised recommendations