Advertisement

Compatibility in NOMA

  • Yuanwei Liu
  • Zhijin Qin
  • Zhiguo Ding
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

In this chapter, the compatibility of NOMA will be introduced by discussing the applications of NOMA to various techniques, such as heterogeneous networks (HetNets), cognitive radio networks (CRNs), and multiple-input multiple-output (MIMO). Particularly, the average performance of NOMA enabled HetNets will be provided as an example.

References

  1. Adhikary, A., Dhillon, H. S., & Caire, G. (2015). Massive-MIMO meets HetNet: Interference coordination through spatial blanking. IEEE Journal on Selected Areas in Communications, 33, 1171–1186.CrossRefGoogle Scholar
  2. Ali, S., Hossain, E., & Kim, D. I. (2017). Non-orthogonal multiple access (NOMA) for downlink multiuser MIMO systems: User clustering, beamforming, and power allocation. IEEE Access, 5, 565–577.CrossRefGoogle Scholar
  3. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32, 1065–1082.CrossRefGoogle Scholar
  4. Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., & Nakamura, T. (2013). Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. In Proceedings of IEEE Intelligent Signal Processing and Communications Systems (ISPACS) (pp. 770–774).Google Scholar
  5. Chen, Z., Ding, Z., Dai, X., & Karagiannidis, G. K. (2016). On the application of quasi-degradation to MISO-NOMA downlink. IEEE Transactions on Signal Processing, 64, 6174–6189.MathSciNetCrossRefGoogle Scholar
  6. Choi, J. (2015). Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems. IEEE Transactions on Communications, 63, 791–800.CrossRefGoogle Scholar
  7. Choi, J. (2016). On the power allocation for MIMO-NOMA systems with layered transmissions. IEEE Transactions on Wireless Communications, 15, 3226–3237.CrossRefGoogle Scholar
  8. Ding, Z., Adachi, F., & Poor, H. V. (2016a). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15, 537–552.CrossRefGoogle Scholar
  9. Ding, Z., Dai, L., & Poor, H. V. (2016b). MIMO-NOMA design for small packet transmission in the internet of things. IEEE Access, 4, 1393–1405.CrossRefGoogle Scholar
  10. Ding, Z., Fan, P., & Poor, H. V. (2016c). Impact of user pairing on 5G non-orthogonal multiple access. IEEE Transactions on Vehicular Technology, 65, 6010–6023.CrossRefGoogle Scholar
  11. Ding, Z., & Poor, H. V. (2016). Design of massive-MIMO-NOMA with limited feedback. IEEE Signal Processing Letters, 23, 629–633.CrossRefGoogle Scholar
  12. Ding, Z., Schober, R., & Poor, H. V. (2016d). A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Transactions on Wireless Communications, 15, 4438–4454.CrossRefGoogle Scholar
  13. Ding, Z., Yang, Z., Fan, P., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letters, 21, 1501–1505.CrossRefGoogle Scholar
  14. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97, 894–914.Google Scholar
  15. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series and products (6th edn.). New York: Academic.zbMATHGoogle Scholar
  16. Hanif, M. F., Ding, Z., Ratnarajah, T., & Karagiannidis, G. K. (2016). A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Transactions on Signal Processing, 64, 76–88.MathSciNetCrossRefGoogle Scholar
  17. Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications, 98, 403–414.CrossRefGoogle Scholar
  18. Higuchi, K., & Kishiyama, Y. (2013). Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink. In Proceedings of IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5).Google Scholar
  19. Hosseini, K., Yu, W., & Adve, R. S. (2014). Large-scale MIMO versus network MIMO for multicell interference mitigation. IEEE Journal of Selected Topics in Signal Processing, 8, 930–941.CrossRefGoogle Scholar
  20. Huh, H., Tulino, A. M., & Caire, G. (2012). Network MIMO with linear zero-forcing beamforming: Large system analysis, impact of channel estimation, and reduced-complexity scheduling. IEEE Transactions on Information Theory, 58, 2911–2934.MathSciNetCrossRefGoogle Scholar
  21. Jo, H.-S., Sang, Y. J., Xia, P., & Andrews, J. G. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications, 11, 3484–3495.CrossRefGoogle Scholar
  22. Kim, B., Lim, S., Kim, H., Suh, S., Kwun, J., Choi, S., et al. (2013). Non-orthogonal multiple access in a downlink multiuser beamforming system. In Proceedings of Military Communications Conference (MILCOM), pp. 1278–1283.Google Scholar
  23. Larsson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52, 186–195.CrossRefGoogle Scholar
  24. Liu, L., Yuen, C., Guan, Y. L., & Li, Y. (2016a). Capacity-achieving iterative LMMSE detection for MIMO-NOMA systems. In IEEE Proceedings of International Communication Conference (ICC), Kuala Lumpur, Malaysia.Google Scholar
  25. Liu, W., Jin, S., Wen, C. K., Matthaiou, M., & You, X. (2016b). A tractable approach to uplink spectral efficiency of two-tier massive MIMO cellular HetNets. IEEE Communications Letters, 20, 348–351.CrossRefGoogle Scholar
  26. Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016c). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953, April 2016.Google Scholar
  27. Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016d). Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology, 65, 10152–10157.CrossRefGoogle Scholar
  28. Liu, Y., Elkashlan, M., Ding, Z., & Karagiannidis, G. K. (2016e). Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Communications Letters, 20, 1465–1468.Google Scholar
  29. Ma, C., Wu, W., Cui, Y., & Wang, X. (2015). On the performance of successive interference cancellation in D2D-enabled cellular networks. In Proceedings of IEEE International Conference on Computer Communication (INFOCOM), Kowloon, Hong Kong (pp. 37–45)Google Scholar
  30. Qin, Z., Fan, J., Liu, Y., Gao, Y., & Li, G. Y. (2018a). Sparse representation for wireless communications: A compressive sensing approach. IEEE Signal Processing Magazine, 35, 40–58.CrossRefGoogle Scholar
  31. Qin, Z., Gao, Y., & Parini, C. G. (2016a). Data-assisted low complexity compressive spectrum sensing on real-time signals under sub-Nyquist rate. IEEE Transactions on Wireless Communications, 15, 1174–1185.CrossRefGoogle Scholar
  32. Qin, Z., Gao, Y., Plumbley, M., & Parini, C. (2016b). Wideband spectrum sensing on real-time signals at sub-Nyquist sampling rates in single and cooperative multiple nodes. IEEE Transactions on Signal Processing, 64, 3106–3117.MathSciNetCrossRefGoogle Scholar
  33. Qin, Z., Liu, Y., Li, Y., & McCann, J. A. (2019). Performance analysis of clustered LoRa networks. In IEEE Transactions on Vehicular Technology, 68(8), 7616–7629, Aug. 2019.Google Scholar
  34. Qin, Z., Yue, X., Liu, Y., Ding, Z., & Nallanathan, A. (2018b). User association and resource allocation in unified NOMA enabled heterogeneous ultra dense networks. IEEE Communications Magazine, 56, 86–92.CrossRefGoogle Scholar
  35. Qureshi, S., Kim, H., & Hassan, S. A. (2016). MIMO uplink NOMA with successive bandwidth division. In Proceedings of IEEE Wireless Communication and Networking Conference, MILCOM, Doha Google Scholar
  36. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In IEEE Proceedings of Vehicle Technology Conference (VTC), Dresden (pp. 1–5).Google Scholar
  37. Sun, Q., Han, S., I, C.-L., & Pan, Z. (2015). On the ergodic capacity of MIMO NOMA systems. IEEE Wireless Communications Letters, 4, 405–408.Google Scholar
  38. Yang, Z., Ding, Z., Fan, P., & Al-Dhahir, N. (2016). A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Transactions on Wireless Communications, 15, 7244–7257.CrossRefGoogle Scholar
  39. Ye, Q., Bursalioglu, O. Y., Papadopoulos, H. C., Caramanis, C., & Andrews, J. G. (2015). User association and interference management in massive MIMO HetNets. arXiv preprint arXiv:1509.07594.Google Scholar
  40. Zhao, J., Liu, Y., Chai, K. K., Chen, Y., Elkashlan, M., & Alonso-Zarate, J. (2016). NOMA-based D2D communications towards 5G. In IEEE Proceedings of Global Communication Conference (GLOBECOM), Washington (pp. 1–6).Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yuanwei Liu
    • 1
  • Zhijin Qin
    • 1
  • Zhiguo Ding
    • 2
  1. 1.LondonUK
  2. 2.ManchesterUK

Personalised recommendations