Advertisement

Choosing a Voting Procedure to Identify Technology for Generating Renewable Electric Power

  • Adiel Teixeira de AlmeidaEmail author
  • Danielle Costa Morais
  • Hannu Nurmi
Chapter
Part of the Advances in Group Decision and Negotiation book series (AGDN, volume 9)

Abstract

Among other worldwide concerns is that of choosing the technology for generating electric power that should comprise the electricity matrix of a country. In this kind of decision process, multiple actors are involved, and they need to consider not just the financial dimension but also the technical, socio-economic and environmental dimensions. This Chapter presents an illustration of the framework for choosing a VP to aggregate information from the profile of the various Decision-Makers involved in this process. This illustration is based on Kang et al. (2018) and Soares et al. (working paper) which presented how a decision model using the FITradeoff method was applied to aid a decision on identifying technology to generate electric power for the Brazilian electricity matrix.

References

  1. Al Garni, H., Kassem, A., Awasthi, A., Komljenovic, D., & Al-Haddad, K. (2016). A multicriteria decision making approach for evaluating renewable power generation sources in Saudi Arabia. Sustainability Energy Technology Assessment, 16, 137–150.CrossRefGoogle Scholar
  2. Alanne, K., & Saari, A. (2006). Distributed energy generation and sustainable development. Renewable and Sustainable Energy Reviews, 10(6), 539–558.CrossRefGoogle Scholar
  3. ANEEL. (2014). Micro e Minegeração Distribuída. Brasília. Available at: http://www.aneel.gov.br.
  4. ANNEL. (2015). Resolução Normativa No 687. Brasília. Available at: http://www2.aneel.gov.br/cedoc/ren2015687.pdf.
  5. Aquila, G., Pamplona, E. O., De Queiroz, A. R., Roleta, P., Jr., & Fonseca, M. N. (2016). An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience. Renewable and Sustainable Energy Review, 70, 1090–1098.CrossRefGoogle Scholar
  6. ATLAS. (2018). Secreteria de Energia e Mineração—Governo do Estado de São Paulo. Atlas Solar, 2018. Disponivel em: http://www.energia.sp.gov.br/2013/04/atlas-solar-levantamento-do-potencial-esta-disponivel-para-consulta-pela-internet/. Acesso em: 2018.
  7. Balezentis, T., & Streimikiene, D. (2017). Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation. Applied Energy, 185, 862–871.CrossRefGoogle Scholar
  8. BGS. (2018). Equipamentos para biogás. BGS, 2018. Disponivel em: http://bgsequipamentos.com.br/produto/listar/?id_c=2&m=2. Acesso em: 2018.
  9. BRANCO. (2018). Geradores. Branco. Disponivel em: https://www.branco.com.br/la/pt_br/produtos/geradores.html. Acesso em: 2018.
  10. CEPEL. (2018). Potencial Eólico—Atlas do Potencial Eólico Brasileiro. CRESEB, 2018. Disponivel em: http://www.cresesb.cepel.br/index.php?section=atlas_eolico. Acesso em: 2018.
  11. da Silva, R. C., De Marchi Neto, I., & Seifert, S. S. (2016). Electricity supply security and the future role of renewable energy sources in Brazil. Renewable and Sustainable Energy Review, 59, 328–341.CrossRefGoogle Scholar
  12. de Almeida, A. T., Cavalcante, C. A. V., Alencar, M. H., Ferreira, R. J. P., de Almeida-Filho, A. T., Garcez, T. V. (2015). Multicriteria and multiobjective models for risk. Reliability and maintenance decision analysis, vol. 231. Springer.Google Scholar
  13. de Almeida, A. T., de Almeida, J. A., Costa, A. P. C. S., & de Almeida-Filho, A. T. (2016). A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoff. European Journal of Operational Research, 250(1), 179–191.MathSciNetCrossRefGoogle Scholar
  14. de Melo, C. A., Jannuzzi, G. M., & Bajay, S. V. (2016). Nonconventional renewable energy governance in Brazil: Lessons to learn from the German experience. Renewable and Sustainable Energy Review, 61, 222–234.CrossRefGoogle Scholar
  15. Edenhofer, O. (2011). IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (pp. 187–190). Cambridge University Press, New York.Google Scholar
  16. EIA. (2013). Levelized Cost of New Generation Resources in the Annual Energy Outlook 2013. EIA—U.S. Energy Information Administration. [S.l.]. 2013. URL: http://www.eia.gov/forecasts/aeo/pdf/electricity_generation.pdf.
  17. Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748–764.CrossRefGoogle Scholar
  18. Energia. (2018). Energia Renováveis. Portal Energia. Skystream 3.7, 2018. Disponivel em: https://www.portal-energia.com/skystream-micro-aerogerador-residencial-sistema-desconta-energia-produzida/. Acesso em: 2018.
  19. Evans, V. S. E. T. E. (2010). Comparing the sustainability parameters of renewable, nuclear and fossil fuel electricity generation technologies. Montreal: [s.n.].Google Scholar
  20. Fritsche, U. R. (2017). Energy and land use. IRENA.Google Scholar
  21. Greenpeace. (2013). [r]evolução energética—A Caminho do Desenvolvimento Limpo. Greenpeace, pp 69–73.Google Scholar
  22. Irena. (2016). Renewable Energy Benefits—Decentralised solutions in the agri-food chain. International Renewable Energy Agency. [S.l.].Google Scholar
  23. Kang, T. H. A., Soares Jr, A. M. C., & De Almeida, A. T. (2018). Evaluating electric power generation technologies: A multicriteria analysis based on the FITradeoff method. Energy, 165, 10–20.CrossRefGoogle Scholar
  24. Komor, P., & Molnar, T. (2015). Background paper on distributed renewable energy generation and integration. Bonn. 2015. United Nations Framework Convention on Climate Change (UNFCCC).Google Scholar
  25. Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision-making to sustainable energy planningda review. Renewable and Sustainable Energy Reviews, 8(4), 365–381.CrossRefGoogle Scholar
  26. Rafaj, P., & Kypreos, S. (2007). Internalisation of external cost in the powergeneration sector: Analysis with global multi-regional MARKAL model. Energy Policy, 35(2), 828–843.CrossRefGoogle Scholar
  27. Skystream. (2018). Skystream 3,7. XZERES WIND, 2018. Disponivel em: http://www.windenergy.com/products/skystream/skystream-3.7. Acesso em: 2018.
  28. Soares, A. M. C., Jr., de Almeida, A. T., Almeida, J. (w.p). The small distributed electric power generation: A multicriteria model for the analysis of technologies. Working paper, 2018.Google Scholar
  29. Solar. (2018). Energia Solar Fotovoltaica. Portal Solar, 2018. Disponivel em: https://www.portalsolar.com.br/energia-solar-fotovoltaica.html. Acesso em: 2018.
  30. Stein, E. W. (2013). A comprehensive multi-criteria model to rank electric energy production technologies. Renewable and Sustainable Energy Reviews, 22, 640–654.CrossRefGoogle Scholar
  31. Strantzali, E., & Aravossis, K. (2016). Decision-making in renewable energy investments: A review. Renewable and Sustainable Energy Reviews, 55, 885–898.CrossRefGoogle Scholar
  32. Tidball, J. B. N. R. E. A. (2010). Cost and performance assumptions for modeling electricity generation technologies (p. 2010). Colorado: NRELl—National Renewable Energy Laboratory.Google Scholar
  33. Tolmasquim, M. T. (2016). Energia Renovável Hidráulica, Biomassa, Eólica, Solar, Oceânica. Rio de Janeiro: Empresa de Pesquisa Energética (EPE). ENERGIA RENOVAVEL.Google Scholar
  34. WCED. (1987). World Commission on Environment and Development (WCED). Our common future. Oxford: Oxford University Press.Google Scholar
  35. Wei, S. P. E. D. M. K. (2010). Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US? Energy Policy, 38(2), 919–931.CrossRefGoogle Scholar
  36. Weisser, D. (2007). A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy, 32(9), 1543–1559.CrossRefGoogle Scholar
  37. Zhang, L., Zhou, P., Newton, S., Fang, J. X., Zhou, D. Q., & Zhang, L. P. (2015). Evaluating clean energy alternatives for Jiangsu, China: An improved multi-criteria decisionmaking method. Energy, 90, 953–964.CrossRefGoogle Scholar
  38. Zografidou, E., Petridis, K., Arabatzis, G., & Dey, P. K. (2016). Optimal design of the renewable energy map of Greece using weighted goal-programming and data envelopment analysis. Computers and Operational Research, 66, 313–326.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidade Federal de Pernambuco (UFPE)RecifeBrazil
  2. 2.University of TurkuTurkuFinland

Personalised recommendations