Gold Nanoparticles in Diagnosis and Treatment of Alzheimer’s Disease

  • Senthilkumar Sivanesan
  • Shanmugam Rajeshkumar


Gold nanoparticles are one of the most important nanoparticles with many applications in diagnosis such as tumor markers detection, microbial pathogen detection, and many imaging techniques and therapies like gene therapy, cancer therapy, and drug delivery systems. Apart from this, these are also used in information technology and many electronic and communication technologies. Delivering of drug across the blood brain is a major problem in the neurodegenerative diseases majorly Parkinson and Alzheimer’s diseases. The gold nanoparticles are golden opportunities in the treatment of neurodegenerative diseases and drug delivery in the blood-brain barriers and inducing the neuronal activities. This chapter clearly explains about the gold nanoparticles and its very clear applications in the blood-brain barrier hurdle to treat neurodegenerative diseases, biomarkers for Alzheimer’s disease, diagnostics targeting, and inhibiting amyloid fibrils in AD and role of gold nanoparticles in the Alzheimer’s disease treatment.


Gold nanoparticles Characterization Alzheimer’s disease Neuron Neurodegenerative disease Treatment 


  1. Abbasi T, Anuradha J, Ganaie SU, Abbasi S A (2015) Gainful utilization of highly intransigent weed ipomoea in the synthesis of gold nanoparticles. J King Saudi Univ 27(1):15–22Google Scholar
  2. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1(1):1550–7033CrossRefGoogle Scholar
  3. Ali T, Kim MJ, Rehman SU, Ahmad A, Kim MO (2017) Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ1-42 mouse model of Alzheimer’s disease. Mol Neurobiol 54(8):6490–6506PubMedCrossRefGoogle Scholar
  4. Ankamwar B (2010) Biosynthesis of gold nanoparticles (Green-gold) using leaf extract of Terminalia catappa. E-Journal Chem 7(4):1334–1339CrossRefGoogle Scholar
  5. Arockiya ARF, Arumugam R, Saravanan S, Anantharaman P (2015) Phytofabrication of gold nanoparticles assisted by leaves of Suaedda monoica and its free radical scavenging property. J Phytochem Photobiol: B Biol 135:75–80Google Scholar
  6. Babu PJ, Sharma P, Saranya S, Bora U (2013) Synthesis of gold nanoparticles using ethonolic leaf extract of Bacopa monnieri and UV irradiation. Mat Lett 93:431–434CrossRefGoogle Scholar
  7. Betzer O, Shilo M, Opochinsky R, Barnoy E, Motiei M, Okun E, Yadid G, Popovtzer R (2017) The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study. Nanomedicine 12(13):1533–1546PubMedCrossRefPubMedCentralGoogle Scholar
  8. Biradar D, Lingappa K (2012) Isolation and screening of gold nanoparticles by microbes. World J Sci Technol 2(2):20–22Google Scholar
  9. Cabuzu D, Cirja A, Puiu R, Grumezescu AM (2015) Biomedical applications of gold nanoparticles. Curr Top Med Chem 15(16):1605–1613PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chauhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman SC, Azam A, Owais M (2011) Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomedicine 6:2305–2319PubMedPubMedCentralGoogle Scholar
  11. Chew WS, Poh KW, Siddiqi NJ, Alhomida AS, Yu LE, Ong WY (2012) Short- and long-term changes in blood miRNA levels after nanogold injection in rats--potential biomarkers of nanoparticle exposure. Biomarkers 17(8):750–757PubMedCrossRefPubMedCentralGoogle Scholar
  12. Correa-Llanten ND, Munoz-Ibacache SA, Castro ME, Munoz PA, Blamey JM (2016) Gold nanoparticles synthesized by Geobacillus sp. Strain ID17 a thermophilic bacterium isolated from deception island, Antartica. Microb Cell Fact 12:75PubMedPubMedCentralCrossRefGoogle Scholar
  13. Das J, Velusamy P (2014) Catalytic reduction of methylene blue using biogenic gold nanoparticles from sesbania grandiflora L. J Taiwan Inst Chem Eng 45(5):2280–2285CrossRefGoogle Scholar
  14. de la Escosura-Muñiz A, Plichta Z, Horák D, Merkoçi A (2015) Alzheimer’s disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosens Bioelectron 67:162–169PubMedCrossRefPubMedCentralGoogle Scholar
  15. Delkhahi S, Rahaie M, Rahimi F (2017) Design and fabrication of a gold nanoparticle-DNA based nanobiosensor for detection of microRNA involved in Alzheimer’s disease. J Fluoresc 27(2):603–610PubMedCrossRefPubMedCentralGoogle Scholar
  16. Deplanche K, Macaskie LE (2008) Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Biol Eng 99:1055–1064Google Scholar
  17. Dorosti N, Jamshidi F (2016) Plant-mediated glod nanoparticles by Dracocephalum kotschyi as anticholinesterase agent: synthesis, characterization and evaluation of anticancer and antibacterial activity. J Appld Biomed 14(3):235–245CrossRefGoogle Scholar
  18. Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Chem Commun 9:1165–1170CrossRefGoogle Scholar
  19. Elbassal EA, Morris C, Kent TW, Lantz R, Ojha B, Wojcikiewicz EP, Du D (2017) Gold nanoparticles as a probe for amyloid-β oligomer and amyloid formation. J Phys Chem C 121(36):20007–20015CrossRefGoogle Scholar
  20. Franco-Romano M, Gil MLA, Palacios- Santander JM, Delgado-Jaen JJ, Naranjo-Rodriguez I, Hidalgo-Hidalgo de Cisneros JL, Cubillana-Aguilera LM (2014) Sonosynthesis of gold nanoparticles from a geranium leaf extract. Utrasonics Sonochem 21:1570–1577PubMedCrossRefPubMedCentralGoogle Scholar
  21. Gao N, Sun H, Dong K, Ren J, Qu X (2015) Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chemistry 21(2):829–835PubMedCrossRefPubMedCentralGoogle Scholar
  22. Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39:1CrossRefGoogle Scholar
  23. Gopinath K, Arumugam A (2014) Extracellular mycosynthesis of gold nanoparticles using Fusarium solani. Appl Nanosci 4(6):657–662CrossRefGoogle Scholar
  24. Gupta J, Fatima MT, Islam Z, Khan RH, Uversky VN, Salahuddin P (2019) Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease. Int J Biol Macromol 130:515–526PubMedCrossRefPubMedCentralGoogle Scholar
  25. Han X, Man Z, Xu S, Cong L, Wang Y, Wang X, Du Y, Zhang Q, Tang S, Liu Z, Li W (2019) A gold nanocluster chemical tongue sensor array for Alzheimer’s disease diagnosis. Colloids Surf B Biointerfaces 173:478–485PubMedCrossRefPubMedCentralGoogle Scholar
  26. He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24:476–480PubMedCrossRefGoogle Scholar
  27. Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67(3–4):1003–1006CrossRefGoogle Scholar
  28. John T, Gladytz A, Kubeil C, Martin LL, Risselada HJ, Abel B (2018) Impact of nanoparticles on amyloid peptide and protein aggregation: a review with a focus on gold nanoparticles. Nanoscale 10(45):20894–20913CrossRefGoogle Scholar
  29. Kim HY, Lee D, Ryu KY, Choi I (2017a) A gold nanoparticle-mediated rapid in vitro assay of anti-aggregation reagents for amyloid β and its validation. Chem Commun 53(32):4449–4452CrossRefGoogle Scholar
  30. Kim MJ, Rehman SU, Amin FU, Kim MO (2017b) Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NF-KB /JNK/GSK3β signaling pathway. Nanomedicine 13(8):2533–2544PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kim H, Lee JU, Kim S, Song S, Sim SJ (2019) A nanoplasmonic biosensor for ultrasensitive detection of Alzheimer’s disease biomarker using a chaotropic agent. ACS Sens 4(3):595–602PubMedCrossRefPubMedCentralGoogle Scholar
  32. Khalil MHM, Ismail EH, El-Magdoub F (2012) Biosynthesis of Au Nanoprticles using olive leaf extract: 1st nano updates. Arab J Chem 5(4):431–437Google Scholar
  33. Konishi Y, Ogi T, Saito N (2010) Room-temperature synthesis and their application of noble metal nanoparticles by metal ion-reducing bacteria. J Japa Soc Powder and Powd Metallur 57(7):508–513CrossRefGoogle Scholar
  34. Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl4 ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24–29CrossRefGoogle Scholar
  35. Lee D, Lee G, Yoon DS (2018) Anti-Aβ drug candidates in clinical trials and plasmonic nanoparticle-based drug-screen for Alzheimer’s disease. Analyst 143(10):2204–2212PubMedCrossRefPubMedCentralGoogle Scholar
  36. Li J, Li Q, Ma X (2016) Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int J Nanomedicine 11:5931–5944PubMedPubMedCentralCrossRefGoogle Scholar
  37. Lin D, He R, Li S, Xu Y, Wang J, Wei G, Ji M, Yang X (2016) Highly efficient destruction of amyloid-β fibrils by femtosecond laser-induced nanoexplosion of gold nanorods. ACS Chem Nerosci 7(12):1728–1736CrossRefGoogle Scholar
  38. Lu W (2012) Adsorptive-mediated brain delivery systems. Curr Pharm Biotechnol 13(12):2340–2348PubMedCrossRefPubMedCentralGoogle Scholar
  39. Lu H, Wu L, Wang J, Wang Z, Yi X, Wang J, Wang N (2018) Voltammetric determination of the Alzheimer’s disease-related ApoE 4 gene from unamplified genomic DNA extracts by ferrocene-capped gold nanoparticles. Mikrochim Acta 185(12):549PubMedCrossRefPubMedCentralGoogle Scholar
  40. Martins PA, Alsaiari S, Julfakyan K, Nie Z, Khashab NM (2017) Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of β-amyloid aggregates. Chem Commun 53(13):2102–2105CrossRefGoogle Scholar
  41. Mata R, Nakkala JR, Sadras SR (2016) Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induce apoptosis in HT-29 colon cancer cells. Colld surf B: Biointerf 143:499–510PubMedCrossRefPubMedCentralGoogle Scholar
  42. Meng DL, Shang L, Feng XH, Huang XF, Che X (2016) Xanthoceraside hollow gold nanoparticles, green pharmaceutics preparation for poorly water-soluble natural anti-AD medicine. Int J Pharm 506(1–2):184–190PubMedCrossRefPubMedCentralGoogle Scholar
  43. Morales-Zavala F, Arriagada H, Hassan N, Velasco C, Riveros A, Álvarez AR, Minniti AN, Rojas-Silva X, Muñoz LL, Vasquez R, Rodriguez K, Sanchez-Navarro M, Giralt E, Araya E, Aldunate R, Kogan MJ (2017) Peptide multifunctionalized gold nanorods decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer’s disease. Nanomedicine 13(7):2341–2350PubMedCrossRefPubMedCentralGoogle Scholar
  44. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Am Chem Soc 1(10):515–519Google Scholar
  45. Muller AP, Ferreira GK, Pires AJ, de Bem Silveira G, de Souza DL, Brandolfi JA, de Souza CT, Paula MMS, Silveira PCL (2017) Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of Alzheimer’s type. Korean J Couns Psychother 77:476–483Google Scholar
  46. Nadaf NY, Kanase SS (2016) Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arab J Chem.
  47. Negahdary M, Heli H (2019) An ultrasensitive electrochemical aptasensor for early diagnosis of Alzheimer’s disease, using a fern leaves-like gold nanostructure. Talanta 198:510–517PubMedCrossRefPubMedCentralGoogle Scholar
  48. Patra S, Mukherjeee S, Barui AK, Ganguly A, Sreedhar B, Patra CR (2015) Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mat Sci and Eng: C 53:298–309CrossRefGoogle Scholar
  49. Philip D (2010) Rapid green synthesis of spherical gold nanoparticles using Magnifera indica leaf. Spectro Acta Part A: Mol Biomol Spectro 77(4):807–810CrossRefGoogle Scholar
  50. Pourali P, Badiee SH, Manafi S, Noorani T, Rezaei A, Yahyaei B (2017) Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron J Biotechnol 29:86–93CrossRefGoogle Scholar
  51. Prades R, Guerrero S, Araya E, Molina C, Salas E, Zurita E, Selva J, Egea G, López-Iglesias C, Teixidó M, Kogan MJ, Giralt E (2012) Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 33(29):7194–7205PubMedCrossRefGoogle Scholar
  52. Radhika SRR, Suman TY (2012) Extracellular biosynthesis of gold nanoparticles using a gram negative bacterium Pseudomonas fluorescens. Asian Pacific J Trop Dis 2:S795–S799Google Scholar
  53. Rajeshkumar S (2016) Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol 14:195–202PubMedPubMedCentralCrossRefGoogle Scholar
  54. Rajeshkumar S, Bharath LV (2017) Mechanism of plant-mediated synthesis of silver nanoparticles - a review on biomolecules involved, characterisation and antibacterial activity. Chem Biol Interact 273:219–227PubMedCrossRefPubMedCentralGoogle Scholar
  55. Rajeshkumar S, Poonam N (2018) Synthesis and biomedical applications of Cerium oxide nanoparticles – a review. Biotechnol Rep 17:1–5CrossRefGoogle Scholar
  56. Ruff J, Hüwel S, Kogan MJ, Simon U, Galla HJ (2017) The effects of gold nanoparticles functionalized with ß-amyloid specific peptides on an in vitro model of blood-brain barrier. Nanomedicine 13(5):1645–1652PubMedCrossRefPubMedCentralGoogle Scholar
  57. Sanati M, Khodagholi F, Aminyavari S, Ghasemi F, Gholami M, Kebriaeezadeh A, Sabzevari O, Hajipour MJ, Imani M, Mahmoudi M, Sharifzadeh M (2019) Impact of gold nanoparticles on amyloid β-induced Alzheimer’s disease in a rat animal model: involvement of STIM proteins. ACS Chem Neurosci. [Epub ahead of print]PubMedCrossRefPubMedCentralGoogle Scholar
  58. Sanghi R (2011) Enzymatic formation of gold nanoparticles using Phanerochaete Chrysosporium. Adv Chem Eng Sci 1:154–162CrossRefGoogle Scholar
  59. Santhoshkumar J, Venkat Kumar S, Rajeshkumar S (2017) Phyto-assisted synthesis, characterization and applications of gold nanoparticles – a review. Biochem Biophys Rep 11:46–57PubMedPubMedCentralGoogle Scholar
  60. Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K (2012) Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst Eng 35:637–643PubMedCrossRefPubMedCentralGoogle Scholar
  61. Shankar SS, Ahmad A, Pasrichaa R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  62. Siddiqi KS, Husen A, Sohrab SS, Yassin MO (2018) Recent status of nanomaterial fabrication and their potential applications in neurological disease management. Nanoscale Res Lett 13(1):231PubMedPubMedCentralCrossRefGoogle Scholar
  63. Singh PK, Kundu S (2013) Biosynthesis of gold nanoparticles using bacteria. Proc Natl Acad Sci India B Biol Sci 84(2):331–336CrossRefGoogle Scholar
  64. Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC (2016) Microbial synthesis of Flower-shaped gold nanoparticles. Artif Cell Nanomed Biotechnol 44(6):1469–1474Google Scholar
  65. Soni N, Prakash S (2012) Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Rep Parasitol 2:1–7Google Scholar
  66. Srinath BS, Rai RV (2015) Rapid biosynthesis of gold nanoparticles by Staphylococcus epidermidis: Its characterization and catalytic activity. Mater Lett 146:23–25CrossRefGoogle Scholar
  67. Stegurová L, Dráberová E, Bartos A, Dráber P, Rípová D, Dráber P (2014) Gold nanoparticle-based immuno-PCR for detection of tau protein in cerebrospinal fluid. J Immunol Methods 406:137–142PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sudhakar S, Santhosh PB, Mani E (2017) Dual role of gold nanorods: inhibition and dissolution of Aβ fibrils induced by near IR laser. ACS Chem Nerosci 8(10):2325–2334CrossRefGoogle Scholar
  69. Suga K, Lai YC, Faried M, Umakoshi H (2018) Direct observation of amyloid β behavior at phospholipid membrane constructed on gold nanoparticles. Internat J Analy Chem 2571808Google Scholar
  70. Tripathi RM, Gupta RK, Singh P, Bhadwalb AS, Shrivastava A, Kumar N, Shrivastav BR (2014) Ultra-sensitive detection of mercury(II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach. Sens Actuators B 204:637–646CrossRefGoogle Scholar
  71. Wadhwani SA, Shedbalkar UU, Singh R, Vashisth P, Pruthi V, Chopade BA (2018) Kinetics of synthesis of gold nanoparticles by Acinetobacter sp. SW30 isolated from environment. Indian J Microbiol 56(4):439–444CrossRefGoogle Scholar
  72. Wang C, Wang Z (2015) Studying the relationship between cell cycle and Alzheimer’s disease by gold nanoparticle probes. Anal Biochem 489:32–37PubMedCrossRefPubMedCentralGoogle Scholar
  73. Wang W, Han Y, Fan Y, Wang Y (2019) Effects of gold nanospheres and nanocubes on amyloid-β peptide fibrillation. Langmuir 35(6):2334–2342PubMedCrossRefGoogle Scholar
  74. Wu W, Huang J, Wu L, Sun D, Lin L, Zhou Y, Wang H, Li Q (2013) two-step-size and shape-separation of biosynthesized gold nanoparticles. Sep Purif Technol 106:117–122CrossRefGoogle Scholar
  75. Xiao-rong Z, Xiao-xiao H, Ke-min W, Xiao-hai Y (2011) Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. Plant Resour Conserv Util Res 2(1):53–64Google Scholar
  76. Xiong N, Zhao Y, Dong X, Zheng J, Sun Y (2017) Design of a molecular hybrid of dual peptide inhibitors coupled on AuNPs for enhanced inhibition of amyloid β-protein aggregation and cytotoxicity. Small 13(13). Scholar
  77. Yang L, Yin T, Liu Y, Sun J, Zhou Y, Liu J (2016) Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater 46:177–190PubMedCrossRefPubMedCentralGoogle Scholar
  78. Zayed MF, Eisa WH (2014) Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity. Spectrochimica Acta Part A: Mol Biomole Spectro 121:238–244CrossRefGoogle Scholar
  79. Zengin A, Tamer U, Caykara T (2013) A SERS-based sandwich assay for ultrasensitive and selective detection of Alzheimer’s tau protein. Biomacromolecules 14(9):3001–3009PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Senthilkumar Sivanesan
    • 1
  • Shanmugam Rajeshkumar
    • 2
  1. 1.Department of Research and DevelopmentSaveetha Institute of Medical and Technical Sciences (SIMATS)ChennaiIndia
  2. 2.Nanomedicine Laboratory, Department of PharmacologySaveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS)ChennaiIndia

Personalised recommendations