Extending List’s Levels

  • Neil Dewar
  • Samuel C. FletcherEmail author
  • Laurenz Hudetz
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 235)


Christian List (Noûs, forthcoming, 2018, [24]) has recently proposed a category-theoretic model of a system of levels, applying it to various pertinent metaphysical questions. We modify and extend this framework to correct some minor defects and better adapt it to application in philosophy of science. This includes a richer use of category theoretic ideas and some illustrations using social choice theory.



ND is primarily responsible for Sects. 6.1 and 6.2. SCF is primarily responsible for Sects. 6.3 and 6.5 and for general editing, and secondarily responsible for Sect. 6.1. LH is primarily responsible for Sect. 6.4 and for Proposition 1, and secondarily responsible for Sect. 6.3 and general editing. All authors thank Katie Robertson for many insightful conversations leading to the genesis of this essay, Tomasz Brengos and Christian List for encouraging comments on a previous version, and the audience and organizers of the workshop “New Perspectives on Inter-Theory Reduction” in Salzburg in November, 2017. SCF acknowledges partial support through a Marie Curie International Incoming Fellowship (PIIF-GA-2013-628533).


  1. 1.
    J. Adámek, H. Herrlich, G.E. Strecker, Abstract and concrete categories: the joy of cats, Online edn. (2004),
  2. 2.
    H. Andréka, J.X. Madarász, I. Németi, Defining new universes in many-sorted logic (2008), Unpublished manuscript
  3. 3.
    K. Arrow, Social Choice and Individual Values (Wiley, New York, 1951)zbMATHGoogle Scholar
  4. 4.
    J. Baez, T. Bartel, J. Dolan, Property, structure, and stuff (2004),
  5. 5.
    T.W. Barrett, Equivalent and inequivalent formulations of classical mechanics. Br. J. Philos. Sci. forthcoming (2018).
  6. 6.
    T.W. Barrett, H. Halvorson, Morita equivalence. Rev. Symb. Log. 9(3), 556–582 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Belot, Geometric Possibility (Oxford University Press, Oxford, 2011)CrossRefGoogle Scholar
  8. 8.
    A. Bokulich, Reexamining the Quantum-Classical Relation (Cambridge University Press, Cambridge, 2008)CrossRefGoogle Scholar
  9. 9.
    F. Borceux, Handbook of Categorical Algebra, Vol. 1: Basic Category Theory (Cambridge University Press, Cambridge, 1994)Google Scholar
  10. 10.
    I. Brigandt, A. Love, Reductionism in biology, in The Stanford Encyclopedia of Philosophy, Spring 2017 edn., ed. by E.N. Zalta. Metaphysics Research Lab, Stanford University (2017)Google Scholar
  11. 11.
    T. Button, S. Walsh, Structure and categoricity: determinacy of reference and truth value in the philosophy of mathematics. Philos. Math. 24(3), 283–307 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    J.R.B. Cocketta, S. Lackb, Restriction categories I: categories of partial maps. Theor. Comput. Sci. 270(1–2), 223–259 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    N. Dewar, Supervenience, reduction, and translation. Philos. Sci. forthcoming (2018).
  14. 14.
    G. Emch, C. Liu, The Logic of Thermostatistical Physics (Springer, Berlin, 2002)CrossRefGoogle Scholar
  15. 15.
    B.H. Feintzeig, Deduction and definability in infinite statistical systems. Synthese 196(5), 1831–1861 (2019)MathSciNetCrossRefGoogle Scholar
  16. 16.
    S.C. Fletcher, Similarity structure on scientific theories, in Topological Philosophy, ed. by B. Skowron (de Gruyter, Berlin, forthcoming)Google Scholar
  17. 17.
    H. Halvorson, The Logic in Philosophy of Science. (Cambridge University Press, Cambridge, 2019)Google Scholar
  18. 18.
    H. Halvorson, D. Tsementzis, Categories of scientific theories, in Categories for the Working Philosopher, ed. by E. Landry (Oxford University Press, Oxford, 2017), pp. 402–429Google Scholar
  19. 19.
    L. Hudetz, Definable categorical equivalence. Philos. Sci. 86(1), 47–75 (2019)MathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Kim, The layered model: metaphysical considerations. Philos. Explor. 5(1), 2–20 (2002)CrossRefGoogle Scholar
  21. 21.
    D.H. Krantz, R.D. Luce, P. Suppes, A. Tversky, Foundations of Measurement, Vol. II: Additive and Polynomial Representation (Academic, San Diego, 1989)Google Scholar
  22. 22.
    C. List, Are interpersonal comparisons of utility indeterminate? Erkenntnis 58(2), 229–260 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    C. List, Social choice theory, in The Stanford Encyclopedia of Philosophy, Winter 2013 edn., ed. by E.N. Zalta. Metaphysics Research Lab, Stanford University (2013)Google Scholar
  24. 24.
    C. List, Levels: descriptive, explanatory, and ontological. Noûs forthcoming (2018). Scholar
  25. 25.
    C. List, K. Spiekermann, Methodological individualism and holism in political science: a reconciliation. Am. Polit. Sci. Rev. 107(4), 629–643 (2013)CrossRefGoogle Scholar
  26. 26.
    B. McLaughlin, K. Bennett, Supervenience, in The Stanford Encyclopedia of Philosophy, Spring 2018 edn., ed. by E.N. Zalta. Metaphysics Research Lab, Stanford University (2018)Google Scholar
  27. 27.
    E. Nagel, The meaning of reduction in the natural sciences, in Science and Civilization, ed. by R.C. Stouffer (University of Wisconsin Press, Madison, 1949), pp. 99–135Google Scholar
  28. 28.
    E. Nagel, The Structure of Science: Problems in the Logic of Scientific Explanation (Harcourt, Brace & World, New York, 1961)CrossRefGoogle Scholar
  29. 29.
    S. Rosenstock, T.W. Barrett, J.O. Weatherall, On Einstein algebras and relativistic spacetimes. Stud. Hist. Philos. Mod. Phys. 52, 309–316 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    K. Schaffner, Approaches to reduction. Philos. Sci. 34, 137–147 (1967)CrossRefGoogle Scholar
  31. 31.
    A.K. Sen, Collective Choice and Social Welfare (Holden-Day, San Francisco, 1970)zbMATHGoogle Scholar
  32. 32.
    O. Shagrir, Concepts of supervenience revisited. Erkenntnis 78(2), 469–485 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    P. Suppes, Representation and Invariance of Scientific Structures (CSLI Publications, Stanford, 2002)zbMATHGoogle Scholar
  34. 34.
    P. Suppes, D.H. Krantz, R.D. Luce, A. Tversky, Foundations of Measurement, Vol. III: Representation, Axiomatization and Invariance (Academic, San Diego, 1990)zbMATHGoogle Scholar
  35. 35.
    J.O. Weatherall, Are Newtonian gravitation and geometrized Newtonian gravitation theoretically equivalent? Erkenntnis 81(5), 1073–1091 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    J.O. Weatherall, Understanding gauge. Philos. Sci. 83(5), 1039–1049 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    J.O. Weatherall, Category theory and the foundations of classical space-time theories, in Categories for the Working Philosopher, ed. by E. Landry (Oxford University Press, Oxford, 2017), pp. 329–348Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Neil Dewar
    • 1
  • Samuel C. Fletcher
    • 2
    Email author
  • Laurenz Hudetz
    • 3
  1. 1.LMU MunichMunichGermany
  2. 2.University of Minnesota, Twin CitiesMinneapolisUSA
  3. 3.London School of EconomicsLondonUK

Personalised recommendations