Category Theory and Philosophy

  • Zbigniew KrólEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 235)


This paper considers the role that category theory can play in philosophy. Category theory is a source of problems, methods and inspiration when it comes to considering both some new and some longstanding philosophical issues. Among the former, the paper draws attention to the ontological interaction between categories and sets, as well as the quantificational criterion of being—to mention just two. Among the latter, it highlights the problem of cognitive access to mathematical objects, and that of the way in which such objects exist. In the context of the development and the ontology of mathematics, I argue in favour of the thesis that category theory is the most “platonic” theory in mathematics. I also point out that category theory impacts significantly upon many standard philosophical positions, providing many counter-examples to popular, often repeated, yet unjustified philosophical claims. The influence of category theory on the foundations and ontology of mathematics is also briefly explored here.


  1. 1.
    P. Bernays, Sur le platonisme dans les mathématiques. L’Enseignement Math. 34, 52–69 (1935)zbMATHGoogle Scholar
  2. 2.
    B. Bolzano, Betrachtungen über einige Gegenstände der Elementargeometrie (Karl Barth, Prague, 1804)Google Scholar
  3. 3.
    A. Döring, C.J. Isham, A topos foundation for theories of physics: Ii. daseinisation and the liberation of quantum theory. J. Math. Phys. 49(5), 053516 (2008)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Döring, C.J. Isham, A topos foundation for theories of physics: I. formal languages for physics. J. Math. Phys. 49(5), 053515 (2008)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Król, Model-theoretical approach to quantum gravity. Ph.D. thesis, the Institute of Physics at the University of Silesia, Katowice (2005)Google Scholar
  6. 6.
    Z. Król, Platonizm Matematyczny i Hermeneutyka (Wyd. IFiS PAN, Warszawa, 2006)Google Scholar
  7. 7.
    Z. Król, Uwagi o stylu historycznym matematyki i rozwoju matematyki, in Światy matematyki, Tworzenie czy odkrywanie?, ed. by I. Bondecka-Krzykowska, J. Pogonowski (Poznań, Wydawnictwo Naukowe UAM, 2010), pp. 203–234Google Scholar
  8. 8.
    Z. Król, Platonism and the Development of Mathematics: Infinity and Geometry (Wyd. IFiS PAN, Warszawa, 2015)zbMATHGoogle Scholar
  9. 9.
    Z. Król, J. Lubacz, What do we need many existential quantifiers for? Some remarks concerning existential quantification, monism and ontological pluralism. manuscriptGoogle Scholar
  10. 10.
    J. Król, Exotic smoothness and noncommutative spaces. The model-theoretical approach. Found. Phys. 34(5), 843–869 (2004)CrossRefGoogle Scholar
  11. 11.
    E. Landry, Categories for the Working Philosopher (Oxford University Press, Oxford, 2017)Google Scholar
  12. 12.
    W.S. McCulloch, Machines that think and want, in Brain and behavior: A Symposium. Comparative Psychology Monographs, vol. 20, chapter 1, ed. by W.C. Halstead (University of California Press, Berkeley, 1950), pp. 39–50Google Scholar
  13. 13.
    W.S. McCulloch, Agathe tyche of nervous nets—the lucky reckoners, in National Physical Laboratory Symposium, chapter 2, vol. 10 (1959), pp. 613–625Google Scholar
  14. 14.
    W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)MathSciNetCrossRefGoogle Scholar
  15. 15.
    J.M. Mira, Symbols versus connections: 50 years of artificial intelligence. Neurocomputing 71(4–6), 671–680 (2008)CrossRefGoogle Scholar
  16. 16.
    I. Moerdijk, G.E. Reyes, Models for Smooth Infinitesimal Analysis (Springer, New York, 1991)CrossRefGoogle Scholar
  17. 17.
    D.H. Perkel, Logical neurons: the enigmatic legacy of warren mcculloch. Trends Neurosci. 11(1), 9–12 (1988)CrossRefGoogle Scholar
  18. 18.
    H. Von Foerster, Computation in neural nets, in Understanding Understanding (Springer, New York, 2003), pp. 21–100CrossRefGoogle Scholar
  19. 19.
    J. Adamek, J. Rosicky, Locally Presentable and Accessible Categories. London Mathematical Society Lecture Notes Series, vol. 189 (Cambridge, 1994)Google Scholar
  20. 20.
    J.D. Hamkins, The set-theoretic multiverse. Rev. Symb. Logic. 5, 416–449 (2012)CrossRefGoogle Scholar
  21. 21.
    W.H. Woodin, The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, 2nd edn. (De Gruyter, Berlin, 2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.International Center for Formal Ontology, Faculty of Administration and Social SciencesWarsaw University of TechnologyWarszawaPoland

Personalised recommendations