Advertisement

DBpedia FlexiFusion the Best of Wikipedia > Wikidata > Your Data

  • Johannes FreyEmail author
  • Marvin Hofer
  • Daniel Obraczka
  • Jens Lehmann
  • Sebastian Hellmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11779)

Abstract

The data quality improvement of DBpedia has been in the focus of many publications in the past years with topics covering both knowledge enrichment techniques such as type learning, taxonomy generation, interlinking as well as error detection strategies such as property or value outlier detection, type checking, ontology constraints, or unit-tests, to name just a few. The concrete innovation of the DBpedia FlexiFusion workflow, leveraging the novel DBpedia PreFusion dataset, which we present in this paper, is to massively cut down the engineering workload to apply any of the vast methods available in shorter time and also make it easier to produce customized knowledge graphs or DBpedias. While FlexiFusion is flexible to accommodate other use cases, our main use case in this paper is the generation of richer, language-specific DBpedias for the 20+ DBpedia chapters, which we demonstrate on the Catalan DBpedia. In this paper, we define a set of quality metrics and evaluate them for Wikidata and DBpedia datasets of several language chapters. Moreover, we show that an implementation of FlexiFusion, performed on the proposed PreFusion dataset, increases data size, richness as well as quality in comparison to the source datasets.

Stable Databus IRI: https://databus.dbpedia.org/dbpedia/prefusion

Keywords

Data fusion Quality assessment Provenance 

Notes

Acknowledgements

We thank Prof. Rahm for his valuable input during the holistic data integration discussions. We thank Jens Grivolla for providing the Catalan use case and all DBpedia chapters and the community. The work is in preparation to the start of the WMF-funded GlobalFactSync project (https://meta.wikimedia.org/wiki/Grants:Project/DBpedia/GlobalFactSyncRE).

References

  1. 1.
    Bilke, A., Bleiholder, J., Naumann, F., Böhm, C., Draba, K., Weis, M.: Automatic data fusion with hummer. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 1251–1254. VLDB Endowment (2005)Google Scholar
  2. 2.
    Bilke, A., Naumann, F.: Schema matching using duplicates. In: Data Engineering, ICDE, pp. 69–80. IEEE (2005)Google Scholar
  3. 3.
    Bleiholder, J., Naumann, F.: Conflict handling strategies in an integrated information system. In: IJCAI Workshop on Information on the Web (IIWeb) (2006)Google Scholar
  4. 4.
    Feeny, K., Davies, J., Welch, J., Hellmann, S., Dirschl, C., Koller, A.: Engineering Agile Big-Data Systems, vol. 1. River Publishers, October 2018Google Scholar
  5. 5.
    Ismayilov, A., Kontokostas, D., Auer, S., Lehmann, J., Hellmann, S.: Wikidata through the eyes of DBpedia. Semant. Web 9(4), 493–503 (2018)CrossRefGoogle Scholar
  6. 6.
    Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen, R., Zaveri, A.: Test-driven evaluation of linked data quality. In: WWW, pp. 747–758 (2014). http://svn.aksw.org/papers/2014/WWW_Databugger/public.pdf
  7. 7.
    Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia. SWJ 6(2), 167–195 (2015)Google Scholar
  8. 8.
    Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: linked data quality assessment and fusion. In: EDBT/ICDT, pp. 116–123. ACM, New York (2012). http://doi.acm.org/10.1145/2320765.2320803
  9. 9.
    Nentwig, M., Groß, A., Rahm, E.: Holistic entity clustering for linked data. In: IEEE, ICDMW. IEEE Computer Society (2016)Google Scholar
  10. 10.
    Nentwig, M., Hartung, M., Ngomo, A.C.N., Rahm, E.: A survey of current link discovery frameworks. Semant. Web 8, 419–436 (2017)CrossRefGoogle Scholar
  11. 11.
    Nentwig, M., Rahm, E.: Incremental clustering on linked data. In: 2018 IEEE ICDMW, pp. 531–538 (2018)Google Scholar
  12. 12.
    Saeedi, A., Peukert, E., Rahm, E.: Comparative evaluation of distributed clustering schemes for multi-source entity resolution. In: ADBIS (2017)Google Scholar
  13. 13.
    Schultz, A., Matteini, A., Isele, R., Bizer, C., Becker, C.: LDIF-linked data integration framework. In: COLD, vol. 782, pp. 125–130. CEUR-WS.org (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Johannes Frey
    • 1
    Email author
  • Marvin Hofer
    • 1
  • Daniel Obraczka
    • 2
  • Jens Lehmann
    • 1
    • 3
  • Sebastian Hellmann
    • 1
  1. 1.Leipzig University (AKSW/KILT Group) & DBpedia AssociationLeipzigGermany
  2. 2.Leipzig University (Database Group)LeipzigGermany
  3. 3.Smart Data Analytics (SDA) Group, Bonn, Germany & Fraunhofer IAISDresdenGermany

Personalised recommendations