Advertisement

ClaimsKG: A Knowledge Graph of Fact-Checked Claims

  • Andon Tchechmedjiev
  • Pavlos FafaliosEmail author
  • Katarina Boland
  • Malo Gasquet
  • Matthäus Zloch
  • Benjamin Zapilko
  • Stefan Dietze
  • Konstantin Todorov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11779)

Abstract

Various research areas at the intersection of computer and social sciences require a ground truth of contextualized claims labelled with their truth values in order to facilitate supervision, validation or reproducibility of approaches dealing, for example, with fact-checking or analysis of societal debates. So far, no reasonably large, up-to-date and queryable corpus of structured information about claims and related metadata is publicly available. In an attempt to fill this gap, we introduce ClaimsKG, a knowledge graph of fact-checked claims, which facilitates structured queries about their truth values, authors, dates, journalistic reviews and other kinds of metadata. ClaimsKG is generated through a semi-automated pipeline, which harvests data from popular fact-checking websites on a regular basis, annotates claims with related entities from DBpedia, and lifts the data to RDF using an RDF/S model that makes use of established vocabularies. In order to harmonise data originating from diverse fact-checking sites, we introduce normalised ratings as well as a simple claims coreference resolution strategy. The current knowledge graph, extensible to new information, consists of 28,383 claims published since 1996, amounting to 6,606,032 triples.

Keywords

Claims Fact-checking Societal debates Knowledge graphs 

Notes

Acknowledgments

We thank Vinicius Woloszyn for providing support on the first step of the pipeline (claim extraction), as well as Josselin Alezot, Imran Meghazi and Elisa Gueneau for their work on the Web interface. We thank all fact-checking sites and the fact-checkers community for the laborious work of manual claim verification.

References

  1. 1.
    Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Persp. 31(2), 211–236 (2017)CrossRefGoogle Scholar
  2. 2.
    Barrón-Cedeño, A., et al.: Overview of the CLEF-2018 checkThat! Lab on automatic identification and verification of political claims, task 2: factuality. In: CLEF. CEUR-WS (2018)Google Scholar
  3. 3.
    Bennett, W.L., Pfetsch, B.: Rethinking political communication in a time of disrupted public spheres. J. Commun. 68(2), 243–253 (2018).  https://doi.org/10.1093/joc/jqx017CrossRefGoogle Scholar
  4. 4.
    Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini, A.: Computational fact checking from knowledge networks. PloS one 10, e0128193 (2015)CrossRefGoogle Scholar
  5. 5.
    Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv e-prints arXiv:1810.04805 [cs.CL] (2018)
  6. 6.
    Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: ACM SIGKDD, pp. 601–610. ACM (2014)Google Scholar
  7. 7.
    Esteves, D., Reddy, A.J., Chawla, P., Lehmann, J.: Belittling the source: trustworthiness indicators to obfuscate fake news on the web. In: 1st Workshop on Fact Extraction and VERification (FEVER), pp. 50–59 (2018)Google Scholar
  8. 8.
    Ferragina, P., Scaiella, U.: TAGME: on-the-fly annotation of short text fragments (by Wikipedia entities). In: ACM ICIKM, pp. 1625–1628. ACM (2010)Google Scholar
  9. 9.
    Ferreira, W., Vlachos, A.: Emergent: a novel data-set for stance classification. In: NAACL-HLT, pp. 1163–1168 (2016)Google Scholar
  10. 10.
    Gerber, D., et al.: Defacto–temporal and multilingual deep fact validation. Web Semant.: Sci. Serv. Agents World Wide Web 35, 85–101 (2015)CrossRefGoogle Scholar
  11. 11.
    Gorrell, G., Bontcheva, K., Derczynski, L., Kochkina, E., Liakata, M., Zubiaga, A.: RumourEval 2019: determining rumour veracity and support for rumours. In: Semantic Evaluation, pp. 60–67 (2017)Google Scholar
  12. 12.
    Hassan, N., et al.: The quest to automate fact-checking. World (2015)Google Scholar
  13. 13.
    Hassan, N., Arslan, F., Li, C., Tremayne, M.: Toward automated fact-checking: detecting check-worthy factual claims by claimbuster. In: ACM SIGKDD, pp. 1803–1812. ACM (2017)Google Scholar
  14. 14.
    Hoffart, J., et al.: Robust disambiguation of named entities in text. In: EMNLP, pp. 782–792. ACL, Stroudsburg (2011). http://dl.acm.org/citation.cfm?id=2145432.2145521
  15. 15.
    Hon, L.: Social media framing within the million hoodies movement for justice. Public Relat. Rev. 42, 9–19 (2015).  https://doi.org/10.1016/j.pubrev.2015.11.013CrossRefGoogle Scholar
  16. 16.
    Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks. In: IJCAI, pp. 3818–3824 (2016)Google Scholar
  17. 17.
    Mihaylova, T., et al.: Fact checking in community forums. In: AAAI, pp. 879–886 (2018)Google Scholar
  18. 18.
    Pérez-Rosas, V., Mihalcea, R.: Experiments in open domain deception detection. In: CEMNLP, pp. 1120–1125 (2015)Google Scholar
  19. 19.
    Popat, K., Mukherjee, S., Strötgen, J., Weikum, G.: Credibility assessment of textual claims on the web. In: ACM ICIKM, pp. 2173–2178. ACM (2016)Google Scholar
  20. 20.
    Popat, K., Mukherjee, S., Strötgen, J., Weikum, G.: Where the truth lies: explaining the credibility of emerging claims on the web and social media. In: WWW, pp. 1003–1012 (2017)Google Scholar
  21. 21.
    Rashkin, H., Choi, E., Jang, J.Y., Volkova, S., Choi, Y.: Truth of varying shades: analyzing language in fake news and political fact-checking. In: EMNLP, pp. 2931–2937 (2017)Google Scholar
  22. 22.
    Scheufele, D.A.: Agenda-setting, priming, and framing revisited: another look at cognitive effects of political communication. Mass Commun. Soc. 3(2–3), 297–316 (2000).  https://doi.org/10.1207/S15327825MCS0323_07CrossRefGoogle Scholar
  23. 23.
    Shiralkar, P., Flammini, A., Menczer, F., Ciampaglia, G.L.: Finding streams in knowledge graphs to support fact checking. In: ICDM, pp. 859–864. IEEE (2017)Google Scholar
  24. 24.
    Smith, M., Shneiderman, B., Rainie, L., Himelboim, I.: Mapping Twitter topic networks: from polarized crowds to community clusters, February 2014Google Scholar
  25. 25.
    Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: Fever: a large-scale dataset for fact extraction and verification. In: NAACL-HLT, pp. 809–819 (2018)Google Scholar
  26. 26.
    Tonon, A., Felder, V., Difallah, D.E., Cudré-Mauroux, P.: VoldemortKG: mapping schema.org and web entities to linked open data. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 220–228. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46547-0_23CrossRefGoogle Scholar
  27. 27.
    Tschiatschek, S., Singla, A., Gomez Rodriguez, M., Merchant, A., Krause, A.: Fake news detection in social networks via crowd signals. In: WWW, pp. 517–524 (2018)Google Scholar
  28. 28.
    Vlachos, A., Riedel, S.: Fact checking: task definition and dataset construction. In: Language Technologies and Computational Social Science, pp. 18–22 (2014)Google Scholar
  29. 29.
    Vlachos, A., Riedel, S.: Identification and verification of simple claims about statistical properties. In: CEMNLP, pp. 2596–2601. ACL (2015)Google Scholar
  30. 30.
    Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)CrossRefGoogle Scholar
  31. 31.
    Walenz, B., et al.: Finding, monitoring, and checking claims computationally based on structured data. In: Computation+Journalism (2014)Google Scholar
  32. 32.
    Wang, W.Y.: Liar, liar pants on fire: a new benchmark dataset for fake news detection. In: AMACL, pp. 422–426 (2017)Google Scholar
  33. 33.
    Wang, X., Yu, C., Baumgartner, S., Korn, F.: Relevant document discovery for fact-checking articles. In: WWW, pp. 525–533 (2018)Google Scholar
  34. 34.
    Wu, Y., Agarwal, P.K., Li, C., Yang, J., Yu, C.: Toward computational fact-checking. Proc. VLDB Endow. 7(7), 589–600 (2014)CrossRefGoogle Scholar
  35. 35.
    Yu, R., Gadiraju, U., Fetahu, B., Lehmberg, O., Ritze, D., Dietze, S.: KnowMore - knowledge base augmentation with structured web markup. Semant. Web J. (2019). http://www.semantic-web-journal.net/content/knowmore-knowledge-base-augmentation-structured-web-markup-1. IOS Press
  36. 36.
    Yua, R., Gadirajua, U., Fetahua, B., Lehmbergb, O., Ritzeb, D., Dietzea, S.: KnowMore-knowledge base augmentation with structured web markup. Semant. Web J. (2017). IOS PressGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andon Tchechmedjiev
    • 1
  • Pavlos Fafalios
    • 2
    Email author
  • Katarina Boland
    • 3
  • Malo Gasquet
    • 5
  • Matthäus Zloch
    • 3
  • Benjamin Zapilko
    • 3
  • Stefan Dietze
    • 3
    • 4
  • Konstantin Todorov
    • 5
  1. 1.LGI2PIMT Mines-AlesAlèsFrance
  2. 2.L3S Research CenterLeibniz University of HanoverHanoverGermany
  3. 3.GESIS - Leibniz Institute for the Social SciencesCologneGermany
  4. 4.Heinrich-Heine-University DüsseldorfDüsseldorfGermany
  5. 5.LIRMM/University of Montpellier/CNRSMontpellierFrance

Personalised recommendations