Advertisement

Truthful Mechanisms for Multi Agent Self-interested Correspondence Selection

  • Nan Zhi
  • Terry R. PayneEmail author
  • Piotr Krysta
  • Minming Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11778)

Abstract

In the distributed ontology alignment construction problem, two agents agree upon a meaningful subset of correspondences that map between their respective ontologies. However, an agent may be tempted to manipulate the negotiation in favour of a preferred alignment by misrepresenting the weight or confidence of the exchanged correspondences. Therefore such an agreement can only be meaningful if the agents can be incentivised to be honest when revealing information. We examine this problem and model it as a novel mechanism design problem on an edge-weighted bipartite graph, where each side of the graph represents each agent’s private entities, and where each agent maintains a private set of valuations associated with its candidate correspondences. The objective is to find a matching (i.e. injective or one-to-one correspondences) that maximises the agents’ social welfare. We study implementations in dominant strategies, and show that they should be solved optimally if truthful mechanisms are required. A decentralised version of the greedy allocation algorithm is then studied with a first-price payment rule, proving tight bounds on the Price of Anarchy and Stability.

Keywords

Decentralised Ontology Alignment Multi-agent systems 

References

  1. 1.
    Adamczyk, M., Sankowski, P., Zhang, Q.: Efficiency of truthful and symmetric mechanisms in one-sided matching. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 13–24. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44803-8_2CrossRefGoogle Scholar
  2. 2.
    Anshelevich, E., Das, S., Naamad, Y.: Anarchy, stability, and utopia: creating better matchings. Auton. Agent. Multi-Agent Syst. 26(1), 120–140 (2013)CrossRefGoogle Scholar
  3. 3.
    Atencia, M., Schorlemmer, W.M.: An interaction-based approach to semantic alignment. J. Web Semant. 12, 131–147 (2012)CrossRefGoogle Scholar
  4. 4.
    Bhawalkar, K., Roughgarden, T.: Welfare guarantees for combinatorial auctions with item bidding. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 700–709. SIAM (2011)Google Scholar
  5. 5.
    Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism design. In: STOC, pp. 39–48 (2005)Google Scholar
  6. 6.
    Chocron, P., Schorlemmer, M.: Vocabulary alignment in openly specified interactions. In: International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 1064–1072 (2017)Google Scholar
  7. 7.
    Christodoulou, G., Kovács, A., Schapira, M.: Bayesian combinatorial auctions. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 820–832. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70575-8_67CrossRefGoogle Scholar
  8. 8.
    Dobzinski, S., Nisan, N., Schapira, M.: Approximation algorithms for combinatorial auctions with complement-free bidders. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 610–618. ACM (2005)Google Scholar
  9. 9.
    Euzenat, J.: Interaction-based ontology alignment repair with expansion and relaxation. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 185–191 (2017)Google Scholar
  10. 10.
    Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38721-0CrossRefzbMATHGoogle Scholar
  11. 11.
    Feldman, M., Fu, H., Gravin, N., Lucier, B.: Simultaneous auctions are (almost) efficient. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 201–210. ACM (2013)Google Scholar
  12. 12.
    Grau, B.C., Motik, B.: Reasoning over ontologies with hidden content: the import-by-query approach. J. Artif. Intell. Res. 45, 197–255 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)CrossRefGoogle Scholar
  14. 14.
    Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge (1989)zbMATHGoogle Scholar
  15. 15.
    Jiménez-Ruiz, E., Payne, T.R., Solimando, A., Tamma, V.: Limiting consistency and conservativity violations through negotiation. In: The 15th International Conference on Principles of Knowledge Representation and Reasoning (KR 2016), pp. 217–226 (2016)Google Scholar
  16. 16.
    Jiménez-Ruiz, E., Meilicke, C., Grau, B.C., Horrocks, I.: Evaluating mapping repair systems with large biomedical ontologies. In: 26th International Workshop on Description Logics, July 2013Google Scholar
  17. 17.
    Krysta, P., Manlove, D., Rastegari, B., Zhang, J.: Size versus truthfulness in the house allocation problem. In: Proceedings of the Fifteenth ACM Conference on Economics and Computation, pp. 453–470. ACM (2014)Google Scholar
  18. 18.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. logist. Q. 2(1–2), 83–97 (1955)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Laera, L., Blacoe, I., Tamma, V., Payne, T., Euzenat, J., Bench-Capon, T.: Argumentation over ontology correspondences in MAS. In: International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 1285–1292 (2007)Google Scholar
  20. 20.
    Lehmann, D.J., O’Callaghan, L., Shoham, Y.: Truth revelation in approximately efficient combinatorial auctions. J. ACM 49(5), 577–602 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lucier, B., Borodin, A.: Price of anarchy for greedy auctions. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 537–553. Society for Industrial and Applied Mathematics (2010)Google Scholar
  22. 22.
    Meilicke, C., Stuckenschmidt, H.: Analyzing mapping extraction approaches. In: Proceedings of the 2nd International Conference on Ontology Matching, pp. 25–36 (2007)Google Scholar
  23. 23.
    Mitra, P., Lin, P., Pan, C.: Privacy-preserving ontology matching. In: AAAI Workshop on Context and Ontologies, vol. WS-05-01, pp. 88–91 (2005)Google Scholar
  24. 24.
    Mu’alem, A., Nisan, N.: Truthful approximation mechanisms for restricted combinatorial auctions. Games Econ. Behav. 64(2), 612–631 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory, vol. 1. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  26. 26.
    Payne, T.R., Tamma, V.: Negotiating over ontological correspondences with asymmetric and incomplete knowledge. In: International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 517–524 (2014)Google Scholar
  27. 27.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nan Zhi
    • 1
  • Terry R. Payne
    • 1
    Email author
  • Piotr Krysta
    • 1
  • Minming Li
    • 2
  1. 1.The University of LiverpoolLiverpoolUK
  2. 2.City University of Hong KongKowloon TongChina

Personalised recommendations