Advertisement

Unsupervised Discovery of Corroborative Paths for Fact Validation

  • Zafar Habeeb SyedEmail author
  • Michael Röder
  • Axel-Cyrille Ngonga Ngomo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11778)

Abstract

Any data publisher can make RDF knowledge graphs available for consumption on the Web. This is a direct consequence of the decentralized publishing paradigm underlying the Data Web, which has led to more than 150 billion facts on more than 3 billion things being published on the Web in more than 10,000 RDF knowledge graphs over the last decade. However, the success of this publishing paradigm also means that the validation of the facts contained in RDF knowledge graphs has become more important than ever before. Several families of fact validation algorithms have been developed over the last years to address several settings of the fact validation problems. In this paper, we consider the following fact validation setting: Given an RDF knowledge graph, compute the likelihood that a given (novel) fact is true. None of the current solutions to this problem exploits RDFS semantics—especially domain, range and class subsumption information. We address this research gap by presenting an unsupervised approach dubbed COPAAL, that extracts paths from knowledge graphs to corroborate (novel) input facts. Our approach relies on a mutual information measure that takes the RDFS semantics underlying the knowledge graph into consideration. In particular, we use the information shared by predicates and paths within the knowledge graph to compute the likelihood of a fact being corroborated by the knowledge graph. We evaluate our approach extensively using 17 publicly available datasets. Our results indicate that our approach outperforms the state of the art unsupervised approaches significantly by up to 0.15 AUC-ROC. We even outperform supervised approaches by up to 0.07 AUC-ROC. The source code of COPAAL is open-source and is available at https://github.com/dice-group/COPAAL.

Notes

Acknowledgements

This work has been supported by the BMVI projects LIMBO (project no. 19F2029C) and OPAL (project no. 19F20284), the BMBF project SOLIDE (project no. 13N14456) and the EU project KnowGraphs (project no. 860801).

References

  1. 1.
    Athreya, R.G., Ngonga Ngomo, A.C., Usbeck, R.: Enhancing community interactions with data-driven chatbots-the DBpedia chatbot. In: Companion of the the Web Conference 2018 on The Web Conference, pp. 143–146 (2018). International World Wide Web Conferences Steering Committee (2018)Google Scholar
  2. 2.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76298-0_52CrossRefGoogle Scholar
  3. 3.
    Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)Google Scholar
  4. 4.
    Bouma, G.: Normalized (pointwise) mutual information in collocation extraction. In: Proceedings of GSCL, pp. 31–40 (2009)Google Scholar
  5. 5.
    Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini, A.: Computational fact checking from knowledge networks. PloS One 10(6), e0128193 (2015)CrossRefGoogle Scholar
  6. 6.
    d’Amato, C., Fanizzi, N., Esposito, F.: Inductive learning for the semantic web: what does it buy? Semant. Web 1(1, 2), 53–59 (2010)Google Scholar
  7. 7.
    Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: Amie: association rule mining under incomplete evidence in ontological knowledge bases. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 413–422. ACM (2013)Google Scholar
  8. 8.
    Gerber, D., et al.: DeFacto–temporal and multilingual deep fact validation. Web Semant. Sci. Serv. Agents World Wide Web 35, 85–101 (2015)CrossRefGoogle Scholar
  9. 9.
    Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81(1), 53–67 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lehmann, K., Turhan, A.-Y.: A framework for semantic-based similarity measures for \(\cal{ELH}\)-concepts. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 307–319. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33353-8_24CrossRefGoogle Scholar
  11. 11.
    Lin, P., Song, Q., Wu, Y.: Fact checking in knowledge graphs with ontological subgraph patterns. Data Sci. Eng. 3(4), 341–358 (2018)CrossRefGoogle Scholar
  12. 12.
    Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)Google Scholar
  13. 13.
    Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the most out of wikidata: semantic technology usage in wikipedia’s knowledge graph. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 376–394. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00668-6_23CrossRefGoogle Scholar
  14. 14.
    Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing yago: scalable machine learning for linked data. In: Proceedings of the 21st International Conference on World Wide Web, pp. 271–280. ACM (2012)Google Scholar
  15. 15.
    Paulheim, H., Bizer, C.: Type Inference on noisy RDF data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41335-3_32CrossRefGoogle Scholar
  16. 16.
    Röder, M., Usbeck, R., Ngonga Ngomo, A.: GERBIL - benchmarking named entity recognition and linking consistently. Semant. Web 9(5), 605–625 (2018)CrossRefGoogle Scholar
  17. 17.
    Shi, B., Weninger, T.: Discriminative predicate path mining for fact checking in knowledge graphs. Knowl.-Based Syst. 104, 123–133 (2016)CrossRefGoogle Scholar
  18. 18.
    Shiralkar, P., Flammini, A., Menczer, F., Ciampaglia, G.L.: Finding streams in knowledge graphs to support fact checking. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 859–864. IEEE (2017)Google Scholar
  19. 19.
    Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: Advances in Neural Information Processing Systems.,pp. 926–934 (2013)Google Scholar
  20. 20.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th InternationalCconference on World Wide Web, pp. 697–706. ACM (2007)Google Scholar
  21. 21.
    Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endow. 4(11), 992–1003 (2011)Google Scholar
  22. 22.
    Syed, Z.H., Röder, M., Ngonga Ngomo, A.C.: Factcheck: Validating rdf triples using textual evidence. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1599–1602. ACM (2018)Google Scholar
  23. 23.
    Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)Google Scholar
  24. 24.
    Yin, X., Han, J., Philip, S.Y.: Truth discovery with multiple conflicting information providers on the web. IEEE Trans. Knowl. Data Eng. 20(6), 796–808 (2008)CrossRefGoogle Scholar
  25. 25.
    Zhao, M., Chow, T.W., Zhang, Z., Li, B.: Automatic image annotation via compact graph based semi-supervised learning. Knowl.-Based Syst. 76, 148–165 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zafar Habeeb Syed
    • 1
    Email author
  • Michael Röder
    • 1
    • 2
  • Axel-Cyrille Ngonga Ngomo
    • 1
    • 2
  1. 1.Data Science GroupPaderborn UniversityPaderbornGermany
  2. 2.Institute for Applied InformaticsLeipzigGermany

Personalised recommendations