Advertisement

Introduction

  • Adrian A. Valverde
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Precision measurements in nuclear physics are an area of active study, serving as an important avenue of research for a wide variety of subfields. In this dissertation, three cases will be presented, one concerning a test of the electroweak sector of the Standard Model, and two addressing different astrophysical nucleosynthesis processes. This chapter motivates these experimental endeavors and provides an introduction to the physics of interest in each of these cases.

Keywords

Precision measurements Mass measurements Half-life measurements Radioactive nuclei Determination of CKM matrix elements Nuclear astrophysics in explosive environments rp-process r-process 

References

  1. 1.
    N. Severijns, O. Naviliat-Cuncic, Symmetry tests in nuclear beta decay. Annu. Rev. Nucl. Part. S. 61, 23–46 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    J.C. Hardy, I.S. Towner, CKM unitarity normalization tests, present and future. Ann. Phys. (Berl.) 525, 443–451 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    J.D. Hobbs, M.S. Neubauer, S. Willenbrock, Tests of the standard electroweak model at the energy frontier. Rev. Mod. Phys. 84, 1477–1526 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    O. Naviliat-Cuncic, M. González-Alonso, Prospects for precision measurements in nuclear β decay in the LHC era. Ann. Phys. (Berl.) 525, 600–619 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    J. Hewett, H. Weerts, R. Brock, J. Butler, B. Casey, J. Collar, A. de Gouvea, R. Essig, Y. Grossman, W. Haxton et al., Fundamental physics at the intensity frontier, arXiv preprint arXiv:1205.2671 (2012)Google Scholar
  6. 6.
    K. Blaum, High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1–78 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    K.S. Krane, D. Halliday, Introductory Nuclear Physics (Wiley, New York, 1988)Google Scholar
  8. 8.
    E. Fermi, An attempt of a theory of beta radiation. 1. Z. Phys. 88, 10 (1934)Google Scholar
  9. 9.
    R.P. Feynman, M. Gell-Mann, Theory of the Fermi interaction. Phys. Rev. 109, 193–198 (1958)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    E.C.G. Sudarshan, R.E. Marshak, Chirality invariance and the universal Fermi interaction. Phys. Rev. 109, 1860–1862 (1958)ADSCrossRefGoogle Scholar
  11. 11.
    E.D. Commins, P.H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge University Press, Cambridge, 1983)Google Scholar
  12. 12.
    J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory (Springer Science & Business Media, Berlin, 2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963)ADSCrossRefGoogle Scholar
  14. 14.
    M. Kobayashi, T. Maskawa, CP-violation in the renormalizable theory of weak interaction. Progr. Theor. Phys. 49, 652–657 (1973)ADSCrossRefGoogle Scholar
  15. 15.
    J.C. Hardy, I.S. Towner, Superallowed 0+ → 0+ nuclear β decays: a critical survey with tests of the conserved vector current hypothesis and the standard model. Phys. Rev. C 71, 055501 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    J.C. Hardy, I.S. Towner, Superallowed 0+ → 0+ nuclear β decays: a new survey with precision tests of the conserved vector current hypothesis and the standard model. Phys. Rev. C 79, 055502 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    J.C. Hardy, I.S. Towner, Superallowed 0+ → 0+ nuclear β decays: 2014 critical survey, with precise results for V udand CKM unitarity. Phys. Rev. C 91, 025501 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    V. Tishchenko, S. Battu, R.M. Carey, D.B. Chitwood, J. Crnkovic, P.T. Debevec, S. Dhamija, W. Earle, A. Gafarov, K. Giovanetti, T.P. Gorringe, F.E. Gray, Z. Hartwig, D.W. Hertzog, B. Johnson, P. Kammel, B. Kiburg, S. Kizilgul, J. Kunkle, B. Lauss, I. Logashenko, K.R. Lynch, R. McNabb, J.P. Miller, F. Mulhauser, C.J.G. Onderwater, Q. Peng, J. Phillips, S. Rath, B.L. Roberts, D.M. Webber, P. Winter, B. Wolfe, Detailed report of the MuLan measurement of the positive muon lifetime and determination of the Fermi constant. Phys. Rev. D 87, 052003 (2013)Google Scholar
  19. 19.
    K. Olive, Particle Data Group, Review of particle physics. Chin. Phys. C 38, 090001 (2014)CrossRefGoogle Scholar
  20. 20.
    A.T. Yue, M.S. Dewey, D.M. Gilliam, G.L. Greene, A.B. Laptev, J.S. Nico, W.M. Snow, F.E. Wietfeldt, Improved determination of the neutron lifetime. Phys. Rev. Lett. 111, 222501 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    A.P. Serebrov, E.A. Kolomensky, A.K. Fomin, I.A. Krasnoshchekova, A.V. Vassiljev, D.M. Prudnikov, I.V. Shoka, A.V. Chechkin, M.E. Chaikovskiy, V.E. Varlamov, S.N. Ivanov, A.N. Pirozhkov, P. Geltenbort, O. Zimmer, T. Jenke, M. Van der Grinten, M. Tucker, Neutron lifetime measurements with a large gravitational trap for ultracold neutrons. Phys. Rev. C 97, 055503 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    R.W. Pattie, N.B. Callahan, C. Cude-Woods, E.R. Adamek, L.J. Broussard, S.M. Clayton, S.A. Currie, E.B. Dees, X. Ding, E.M. Engel, D.E. Fellers, W. Fox, P. Geltenbort, K.P. Hickerson, M.A. Hoffbauer, A.T. Holley, A. Komives, C.-Y. Liu, S.W.T. MacDonald, M. Makela, C.L. Morris, J.D. Ortiz, J. Ramsey, D.J. Salvat, A. Saunders, S.J. Seestrom, E.I. Sharapov, S.K. Sjue, Z. Tang, J. Vanderwerp, B. Vogelaar, P.L. Walstrom, Z. Wang, W. Wei, H.L. Weaver, J.W. Wexler, T.L. Womack, A.R. Young, B.A. Zeck, Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection. Science 360, 627–632 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    S. Arzumanov, L. Bondarenko, S. Chernyavsky, P. Geltenbort, V. Morozov, V. Nesvizhevsky, Y. Panin, A. Strepetov, A measurement of the neutron lifetime using the method of storage of ultracold neutrons and detection of inelastically up-scattered neutrons. Phys. Lett. B 745, 79–89 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    A. Steyerl, J.M. Pendlebury, C. Kaufman, S.S. Malik, A.M. Desai, Quasielastic scattering in the interaction of ultracold neutrons with a liquid wall and application in a reanalysis of the Mambo I neutron-lifetime experiment. Phys. Rev. C 85, 065503 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    A. Pichlmaier, V. Varlamov, K. Schreckenbach, P. Geltenbort, Neutron lifetime measurement with the UCN trap-in-trap MAMBO II. Phys. Lett. B 693, 221–226 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    A. Serebrov, V. Varlamov, A. Kharitonov, A. Fomin, Y. Pokotilovski, P. Geltenbort, J. Butterworth, I. Krasnoschekova, M. Lasakov, R. Tal’daev, A. Vassiljev, O. Zherebtsov, Measurement of the neutron lifetime using a gravitational trap and a low-temperature Fomblin coating. Phys. Lett. B 605, 72–78 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    W. Mampe, L. Bondarenko, V. Morozov, Y.N. Panin, A. Fomin, Measuring neutron lifetime by storing ultracold neutrons and detecting inelastically scattered neutrons. JETP Lett. 57, 82–82 (1993)ADSGoogle Scholar
  28. 28.
    N. Severijns, M. Tandecki, T. Phalet, I.S. Towner, \(\mathcal {F} t\) values of the T = 1∕2 mirror β transitions. Phys. Rev. C 78, 055501 (2008)Google Scholar
  29. 29.
    W.J. Marciano, A. Sirlin, Improved calculation of electroweak radiative corrections and the value of V ud. Phys. Rev. Lett. 96, 032002 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    M.A.-P. Brown, E.B. Dees, E. Adamek, B. Allgeier, M. Blatnik, T.J. Bowles, L.J. Broussard, R. Carr, S. Clayton, C. Cude-Woods, S. Currie, X. Ding, B.W. Filippone, A. García, P. Geltenbort, S. Hasan, K.P. Hickerson, J. Hoagland, R. Hong, G.E. Hogan, A.T. Holley, T.M. Ito, A. Knecht, C.-Y. Liu, J. Liu, M. Makela, J.W. Martin, D. Melconian, M.P. Mendenhall, S.D. Moore, C.L. Morris, S. Nepal, N. Nouri, R.W. Pattie, A. Pérez Galván, D.G. Phillips, R. Picker, M.L. Pitt, B. Plaster, J.C. Ramsey, R. Rios, D.J. Salvat, A. Saunders, W. Sondheim, S.J. Seestrom, S. Sjue, S. Slutsky, X. Sun, C. Swank, G. Swift, E. Tatar, R.B. Vogelaar, B. VornDick, Z. Wang, J. Wexler, T. Womack, C. Wrede, A.R. Young, B.A. Zeck, New result for the neutron β-asymmetry parameter A 0 from UCNA. Phys. Rev. C 97, 035505 (2018)Google Scholar
  31. 31.
    O. Naviliat-Cuncic, N. Severijns, Test of the conserved vector current hypothesis in T = 1∕2 mirror transitions and new determination of |V ud|. Phys. Rev. Lett. 102, 142302 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    M. Eibach, G. Bollen, M. Brodeur, K. Cooper, K. Gulyuz, C. Izzo, D.J. Mor-rissey, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, C.S. Sumithrarachchi, A.A. Valverde, A.C.C. Villari, Determination of the Q EC values of the T = 1∕2 mirror nuclei 21Na and 29P at LEBIT. Phys. Rev. C 92, 045502 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    B. Fenker, A. Gorelov, D. Melconian, J.A. Behr, M. Anholm, D. Ashery, R.S. Behling, I. Cohen, I. Craiciu, G. Gwinner, J. McNeil, M. Mehlman, K. Olchanski, P.D. Shidling, S. Smale, C.L. Warner, Precision measurement of the β asymmetry in spin-polarized 37K decay. Phys. Rev. Lett. 120, 062502 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    I.S. Towner, J.C. Hardy, Improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi β decay. Phys. Rev. C 77, 025501 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    I.S. Towner, J.C. Hardy, Parametrization of the statistical rate function for select superallowed transitions. Phys. Rev. C 91, 015501 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    T. Eronen, D. Gorelov, J. Hakala, J.C. Hardy, A. Jokinen, A. Kankainen, V.S. Kolhinen, I.D. Moore, H. Penttilä, M. Reponen, J. Rissanen, A. Saastamoinen, J. Äystö, Q EC values of the superallowed β emitters 10C, 34Ar, 38Ca, and 46V. Phys. Rev. C 83, 055501 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    A.A. Kwiatkowski, A. Chaudhuri, U. Chowdhury, A.T. Gallant, T.D. Macdonald, B.E. Schultz, M.C. Simon, J. Dilling, Mass measurements of singly and highly charged radioactive ions at TITAN: a new Q EC-value measurement of 10C. Ann. Phys. (Berl.) 525, 529–537 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    A.A. Valverde, G. Bollen, M. Brodeur, R.A. Bryce, K. Cooper, M. Eibach, K. Gulyuz, C. Izzo, D.J. Morrissey, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, C.S. Sumithrarachchi, A.C.C. Villari, First direct determination of the superallowed β-decay Q EC value for 14O. Phys. Rev. Lett. 114, 232502 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    M.R. Dunlop, C.E. Svensson, G.C. Ball, G.F. Grinyer, J.R. Leslie, C. Andreoiu, R.A.E. Austin, T. Ballast, P.C. Bender, V. Bildstein, A. Diaz Varela, R. Dunlop, A.B. Garnsworthy, P.E. Garrett, G. Hackman, B. Hadinia, D.S. Jamieson, A.T. Laffoley, A.D. MacLean, D.M. Miller, W.J. Mills, J. Park, A.J. Radich, M.M. Rajabali, E.T. Rand, C. Unsworth, A. Valencik, Z.M. Wang, E.F. Zganjar, High-precision half-life measurements for the superallowed β + emitter 10C: implications for weak scalar currents. Phys. Rev. Lett. 116, 172501 (2016)Google Scholar
  40. 40.
    A.T. Laffoley, C.E. Svensson, C. Andreoiu, R.A.E. Austin, G.C. Ball, B. Blank, H. Bouzomita, D.S. Cross, A. Diaz Varela, R. Dunlop, P. Finlay, B. Garnsworthy, P.E. Garrett, J. Giovinazzo, G.F. Grinyer, G. Hackman, B. Hadinia, D.S. Jamieson, S. Ketelhut, K.G. Leach, J.R. Leslie, E. Tardiff, J.C. Thomas, C. Unsworth, High-precision half-life measurements for the superallowed Fermi β + emitter 14O. Phys. Rev. C 88, 015501 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    P.A. Voytas, E.A. George, G.W. Severin, L. Zhan, L.D. Knutson, Measurement of the branching ratio for the β decay of 14O. Phys. Rev. C 92, 065502 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    W. Satuła, J. Dobaczewski, W. Nazarewicz, T.R. Werner, Isospin-breaking corrections to superallowed Fermi β decay in isospin- and angular-momentum-projected nuclear density functional theory. Phys. Rev. C 86, 054316 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    F.P. Calaprice, S.J. Freedman, W.C. Mead, H.C. Vantine, Experimental study of weak magnetism and second-class interaction effects in the β decay of polarized 19Ne. Phys. Rev. Lett. 35, 1566–1570 (1975)ADSCrossRefGoogle Scholar
  44. 44.
    G.S. Masson, P.A. Quin, Measurement of the asymmetry parameter for 29P β decay. Phys. Rev. C 42, 1110–1119 (1990)ADSCrossRefGoogle Scholar
  45. 45.
    J.D. Garnett, E.D. Commins, K.T. Lesko, E.B. Norman, β-Decay asymmetry parameter for 35Ar: an anomaly resolved. Phys. Rev. Lett. 60, 499–502 (1988)ADSCrossRefGoogle Scholar
  46. 46.
    A. Converse, M. Allet, W. Haeberli, W. Hajdas, J. Lang, J. Liechti, H. Lüscher, M. Miller, R. Müller, O. Naviliat-Cuncic, P. Quin, J. Sromicki, Measurement of the asymmetry parameter for 35ar β-decay as a test of the CVC hypothesis. Phys. Lett. B 304, 60–64 (1993)ADSCrossRefGoogle Scholar
  47. 47.
    D. Melconian, J. Behr, D. Ashery, O. Aviv, P Bricault, M. Dombsky S. Fostner, A. Gorelov, S. Gu, V. Hanemaayer, K. Jackson, M. Pearson, I. Vollrath, Measurement of the neutrino asymmetry in the β decay of laser-cooled, polarized 37K. Phys. Lett. B 649, 370–375 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    P.A. Vetter, J.R. Abo-Shaeer, S.J. Freedman, R. Maruyama, Measurement of the β-ν correlation of 21Na using shakeoff electrons. Phys. Rev. C 77, 035502 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    M. Deicher, M. Stachura, V. Amaral, M. Bissell, J. Correia, A. Gottberg, L. Hemmingsen, S. Hong, K. Johnston, Y. Kadi, M. Kowalska, J. Lehnert, A. Lopes, G. Neyens, K. Potzger, D. Pribat, N. Severijns, C. Tenreiro, P. Thulstrup, T. Trindade, T. Wichert, H. Wolf, D. Yordanov, Z. Salman, VITO – Versatile Ion-Polarized Techniques On-Line at ISOLDE (Former ASPIC UHV Beamline), Technical Report CERN-INTC-2013-013. INTC-O-017 (CERN, Geneva, 2013)Google Scholar
  50. 50.
    M. Brodeur, J. Kelly, J. Long, C. Nicoloff, B. Schultz, V ud determination from light nuclide mirror transitions. Nucl. Instrum. Meth. Phys. Res. B 376; Proceedings of the XVIIth International Conference on Electromagnetic Isotope Separators and Related Topics (EMIS2015), 11–15 May 2015 (Grand Rapids, MI, 2016), pp. 281–283Google Scholar
  51. 51.
    K. Gulyuz, G. Bollen, M. Brodeur, R.A. Bryce, K. Cooper, M. Eibach, C. Izzo, E. Kwan, K. Manukyan, D.J. Morrissey, O. Naviliat-Cuncic, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, C.S. Sumithrarachchi, A.A. Valverde, A.C.C. Villari, High precision determination of the β decay Q EC value of 11C and implications on the tests of the standard model. Phys. Rev. Lett. 116, 012501 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    J. Grinyer, G.F. Grinyer, M. Babo, H. Bouzomita, P. Chauveau, P. Delahaye, M. Dubois, R. Frigot, P. Jardin, C. Leboucher, L. Maunoury, C. Seiffert, J.C. Thomas, E. Traykov, High-precision half-life measurement for the isospin T = 1∕2 mirror β + decay of 21Na. Phys. Rev. C 91, 032501 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    M. Brodeur, C. Nicoloff, T. Ahn, J. Allen, D.W. Bardayan, F.D. Becchetti, Y.K. Gupta, M.R. Hall, O. Hall, J. Hu, J.M. Kelly, J.J. Kolata, J. Long, P. O’Malley, B.E. Schultz, Precision half-life measurement of 17F. Phys. Rev. C 93, 025503 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    S. Triambak, P. Finlay, C.S. Sumithrarachchi, G. Hackman, G.C. Ball, P.E. Garrett, C.E. Svensson, D.S. Cross, A.B. Garnsworthy, R. Kshetri, J.N. Orce, M.R. Pearson, E.R. Tardiff, H. Al-Falou, R.A.E. Austin, R. Churchman, M.K. Djongolov, R. D’Entremont, C. Kierans, L. Milovanovic, S. O’Hagan, S. Reeve, S.K.L. Sjue, S.J. Williams, High-precision measurement of the 19Ne half-life and implications for right-handed weak currents. Phys. Rev. Lett. 109, 042301 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    L.J. Broussard, H.O. Back, M.S. Boswell, A.S. Crowell, P. Dendooven, G.S. Giri, C.R. Howell, M.F. Kidd, K. Jungmann, W.L. Kruithof, A. Mol, C.J.G. Onderwater, R.W. Pattie, P.D. Shidling, M. Sohani, D.J. van der Hoek, A. Rogachevskiy, E. Traykov, O.O. Versolato, L. Willmann, H.W. Wilschut, A.R. Young, Measurement of the half-life of the \(T =\frac {1}{2}\) mirror decay of 19Ne and its implication on physics beyond the standard model. Phys. Rev. Lett. 112, 212301 (2014)Google Scholar
  56. 56.
    J. Long, T. Ahn, J. Allen, D.W. Bardayan, F.D. Becchetti, D. Blankstein, M. Brodeur, D. Burdette, B. Frentz, M.R. Hall, J.M. Kelly, J.J. Kolata, P.D. O’Malley, B.E. Schultz, S.Y. Strauss, A.A. Valverde, Precision half-life measurement of 25Al. Phys. Rev. C 96, 015502 (2017)ADSCrossRefGoogle Scholar
  57. 57.
    J. Grinyer, G.F. Grinyer, M. Babo, H. Bouzomita, P. Chauveau, P. Delahaye, M. Dubois, R. Frigot, P. Jardin, C. Leboucher, L. Maunoury, C. Seiffert, J.C. Thomas, E. Traykov, High-precision half-life measurements of the T = 1∕2 mirror β decays 17F and 33Cl. Phys. Rev. C 92, 045503 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    P.D. Shidling, D. Melconian, S. Behling, B. Fenker, J.C. Hardy, V.E. Iacob, E. McCleskey, M. McCleskey, M. Mehlman, H.I. Park, B.T. Roeder, Precision half-life measurement of the β + decay of 37K. Phys. Rev. C 90, 032501 (2014)ADSCrossRefGoogle Scholar
  59. 59.
    S.E. Woosley, R.E. Taam, Gamma-ray bursts from thermonuclear explosions on neutron stars. Nature 263, 101–103 (1976)ADSCrossRefGoogle Scholar
  60. 60.
    R.K. Wallace, S.E. Woosley, Explosive hydrogen burning. Astrophys. J. Suppl. Ser. 45, 389–420 (1981)ADSCrossRefGoogle Scholar
  61. 61.
    H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cumming, M. Ouel-lette, T. Rauscher, F.-K. Thielemann, M. Wiescher, End point of the rp process on accreting neutron stars. Phys. Rev. Lett. 86, 3471–3474 (2001)ADSCrossRefGoogle Scholar
  62. 62.
    J.L. Fisker, H. Schatz, F.-K. Thielemann, Explosive hydrogen burning during type I X-ray bursts. Astrophys. J. Suppl. Ser. 174, 261 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    A. Parikh, J. José, G. Sala, C. Iliadis, Nucleosynthesis in type I X-ray bursts. Prog. Part. Nucl. Phys. 69, 225–253 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    A. Parikh, J. José, C. Iliadis, F. Moreno, T. Rauscher, Impact of uncertainties in reaction Q values on nucleosynthesis in type I X-ray bursts. Phys. Rev. C 79, 045802 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    H. Schatz, The importance of nuclear masses in the astrophysical rp-process. Int. J. Mass Spectrom. 251, 293–299 (2006)CrossRefGoogle Scholar
  66. 66.
    C. Iliadis, Nuclear Physics of Stars (Wiley, Hoboken, 2007)CrossRefGoogle Scholar
  67. 67.
    H. Schatz, W.-J. Ong, Dependence of X-ray burst models on nuclear masses. Astrophys. J. 844, 139 (2017)ADSCrossRefGoogle Scholar
  68. 68.
    M. Arnould, S. Goriely, K. Takahashi, The r-process of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries. Phys. Rep. 450, 97–213 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    A. Arcones, F.-K. Thielemann, Neutrino-driven wind simulations and nucleosynthesis of heavy elements. J. Phys. G 40, 013201 (2013)ADSCrossRefGoogle Scholar
  70. 70.
    P. Mösta, C.D. Ott, D. Radice, L.F. Roberts, E. Schnetter, R. Haas, A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 528, 376 (2015)ADSCrossRefGoogle Scholar
  71. 71.
    F.-K. Thielemann, M. Eichler, I. Panov, B. Wehmeyer, Neutron star mergers and nucleosynthesis of heavy elements. Annu. Rev. Nucl. Part. S. 67, 253–274 (2017)ADSCrossRefGoogle Scholar
  72. 72.
    B.P. Abbott et al., Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017)ADSCrossRefGoogle Scholar
  73. 73.
    B.P. Abbott et al., GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017)ADSCrossRefGoogle Scholar
  74. 74.
    A. Goldstein, P. Veres, E. Burns, M.S. Briggs, R. Hamburg, D. Kocevski, C.A. Wilson-Hodge, R.D. Preece, S. Poolakkil, O.J. Roberts, C.M. Hui, V. Connaughton, J. Racusin, A. von Kienlin, T.D. Canton, N. Christensen, T. Littenberg, K. Siellez, L. Blackburn, J. Broida, E. Bissaldi, W.H. Cleveland, M.H. Gibby, M.M. Giles, R.M. Kippen, S. McBreen, J. McEnery, C.A. Meegan, W.S. Paciesas, M. Stanbro, An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astro-phys. J. Lett. 848, L14 (2017)Google Scholar
  75. 75.
    V. Savchenko, C. Ferrigno, E. Kuulkers, A. Bazzano, E. Bozzo, S. Brandt, J. Chenevez, T.J.-L. Courvoisier, R. Diehl, A. Domingo, L. Hanlon, E. Jourdain, A. von Kienlin, P. Laurent, F. Lebrun, A. Lutovinov, A. Martin-Carrillo, S. Mereghetti, L. Natalucci, J. Rodi, J.-P. Roques, R. Sunyaev, P. Ubertini, Integral detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys. J. Lett. 848, L15 (2017)ADSCrossRefGoogle Scholar
  76. 76.
    R. Chornock, E. Berger, D. Kasen, P.S. Cowperthwaite, M. Nicholl, V.A. Villar, K.D. Alexander, P.K. Blanchard, T. Eftekhari, W. Fong, R. Margutti, P.K.G. Williams, J. Annis, D. Brout, D.A. Brown, H.-Y. Chen, M.R. Drout, B. Farr, R.J. Foley, J.A. Frieman, C.L. Fryer, K. Herner, D.E. Holz, R. Kessler, T. Matheson, B.D. Metzger, E. Quataert, A. Rest, M. Sako, D.M. Scolnic, N. Smith, M. Soares-Santos, The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817. IV. Detection of near-infrared signatures of r -process nucleosynthesis with Gemini-south. Astrophys. J. Lett. 848, L19 (2017)ADSCrossRefGoogle Scholar
  77. 77.
    E. Pian, P. D’Avanzo, S. Benetti, M. Branchesi, E. Brocato, S. Campana, E. Cappellaro, S. Covino, V. D’Elia, J. Fynbo et al., Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67 (2017)ADSCrossRefGoogle Scholar
  78. 78.
    M. Mumpower, R. Surman, G. McLaughlin, A. Aprahamian, The impact of individual nuclear properties on r-process nucleosynthesis. Prog. Part. Nucl. Phys. 86, 86–126 (2016)ADSCrossRefGoogle Scholar
  79. 79.
    P. Moller, J. Nix, W. Myers, W. Swiatecki, Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185–381 (1995)ADSCrossRefGoogle Scholar
  80. 80.
    M. Liu, N. Wang, Y. Deng, X. Wu, Further improvements on a global nuclear mass model. Phys. Rev. C 84, 014333 (2011)ADSCrossRefGoogle Scholar
  81. 81.
    H. Zhang, J. Dong, N. Ma, G. Royer, J. Li, H. Zhang, An improved nuclear mass formula with a unified prescription for the shell and pairing corrections. Nucl. Phys. A 929, 38–53 (2014)ADSCrossRefGoogle Scholar
  82. 82.
    H. Koura, T. Tachibana, M. Uno, M. Yamada, Nuclidic mass formula on a spherical basis with an improved even-odd term. Progr. Theor. Phys. 113, 305–325 (2005)ADSCrossRefGoogle Scholar
  83. 83.
    J. Duflo, A. Zuker, Microscopic mass formulas. Phys. Rev. C 52, R23–R27 (1995)ADSCrossRefGoogle Scholar
  84. 84.
    M.W. Kirson, An empirical study of the Duflo–Zuker mass formula. Nucl. Phys. A 893, 27–42 (2012)ADSCrossRefGoogle Scholar
  85. 85.
    S. Goriely, F. Tondeur, J. Pearson, A Hartree–Fock nuclear mass table. At. Data Nucl. Data Tables 77, 311–381 (2001)ADSCrossRefGoogle Scholar
  86. 86.
    K.-L. Kratz, K. Farouqi, P. Möller, A high-entropy-wind r-process study based on nuclear-structure quantities from the new finite-range droplet model FRDM (2012). Astrophys. J. 792, 6 (2014)Google Scholar
  87. 87.
    S. Goriely, N. Chamel, J.M. Pearson, Skyrme-Hartree-Fock-Bogoliubov nuclear mass formulas: crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing. Phys. Rev. Lett. 102, 152503 (2009)Google Scholar
  88. 88.
    S. Goriely, N. Chamel, J.M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient. Phys. Rev. C 88, 024308 (2013)Google Scholar
  89. 89.
    M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, The Ame2012 atomic mass evaluation. Chin. Phys. C 36, 1603–2014 (2012)CrossRefGoogle Scholar
  90. 90.
    D. Atanasov, P. Ascher, K. Blaum, R.B. Cakirli, T.E. Cocolios, S. George, S. Goriely, F. Herfurth, H.-T. Janka, O. Just, M. Kowalska, S. Kreim, D. Kisler, Y.A. Litvinov, D. Lunney, V. Manea, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Welker, F. Wienholtz, R.N. Wolf, K. Zuber, Precision mass measurements of 129–131Cd and their impact on stellar nucleosynthesis via the rapid neutron capture process. Phys. Rev. Lett. 115, 232501 (2015)ADSCrossRefGoogle Scholar
  91. 91.
    C. Babcock, R. Klawitter, E. Leistenschneider, D. Lascar, B.R. Barquest, A. Finlay, M. Foster, A.T. Gallant, P. Hunt, B. Kootte, Y. Lan, S.F. Paul, M.L. Phan, M.P. Reiter, B. Schultz, D. Short, C. Andreoiu, M. Brodeur, I. Dillmann, G. Gwinner, A.A. Kwiatkowski, K.G. Leach, J. Dilling, Mass measurements of neutron-rich indium isotopes toward the N = 82 shell closure. Phys. Rev. C 97, 024312 (2018)ADSCrossRefGoogle Scholar
  92. 92.
    J. Van Schelt, D. Lascar, G. Savard, J.A. Clark, S. Caldwell, A. Chaudhuri, J. Fallis, J.P. Greene, A.F. Levand, G. Li, K.S. Sharma, M.G. Sternberg, T. Sun, B.J. Zabransky, Mass measurements near the r-process path using the Canadian penning trap mass spectrometer. Phys. Rev. C 85, 045805 (2012)ADSCrossRefGoogle Scholar
  93. 93.
    R. Orford, N. Vassh, J.A. Clark, G.C. McLaughlin, M.R. Mumpower, G. Savard, R. Surman, A. Aprahamian, F. Buchinger, M.T. Burkey, D. A. Gorelov, T.Y. Hirsh, J.W. Klimes, G.E. Morgan, A. Nystrom, K.S. Sharma, Precision mass measurements of neutron-rich neodymium and samarium isotopes and their role in understanding rare-earth peak formation. Phys. Rev. Lett. 120, 262702 (2018)ADSCrossRefGoogle Scholar
  94. 94.
    M. Vilen, J.M. Kelly, A. Kankainen, M. Brodeur, A. Aprahamian, L. Canete, T. Eronen, A. Jokinen, T. Kuta, I.D. Moore, M.R. Mumpower, D.A. Nesterenko, H. Penttilä, I. Pohjalainen, W.S. Porter, S. Rinta-Antila, R. Surman, A. Voss, J. Äystö, Precision mass measurements on neutron-rich rare-earth iso-topes at JYFLTRAP: reduced neutron pairing and implications for r-process calculations. Phys. Rev. Lett. 120, 262701 (2018)ADSCrossRefGoogle Scholar
  95. 95.
    Y.X. Watanabe, Y.H. Kim, S.C. Jeong, Y. Hirayama, N. Imai, H. Ishiyama, H.S. Jung, H. Miyatake, S. Choi, J.S. Song, E. Clement, G. de France, A. Navin, M. Rejmund, C. Schmitt, G. Pollarolo, L. Corradi, E. Fioretto, D. Montanari, M. Niikura, D. Suzuki, H. Nishibata, J. Takatsu, Pathway for the production of neutron-rich isotopes around the N= 126 shell closure. Phys. Rev. Lett. 115, 172503 (2015)ADSCrossRefGoogle Scholar
  96. 96.
    C.H. Dasso, G. Pollarolo, A. Winther, Systematics of isotope production with radioactive beams. Phys. Rev. Lett. 73, 1907–1910 (1994)ADSCrossRefGoogle Scholar
  97. 97.
    V. Zagrebaev, W. Greiner, Production of new heavy isotopes in low-energy multinucleon transfer reactions. Phys. Rev. Lett. 101, 122701 (2008)ADSCrossRefGoogle Scholar
  98. 98.
    Y. Watanabe, Y. Hirayama, N. Imai, H. Ishiyama, S. Jeong, H. Miyatake, E. Clement, G. de France, A. Navin, M. Rejmund, C. Schmitt, G. Pollarolo, L. Corradi, E. Fioretto, D. Montanari, S. Choi, Y. Kim, J. Song, M. Niikura, D. Suzuki, H. Nishibata, J. Takatsu, Study of collisions of 136Xe+198Pt for the KEK isotope separator. Nucl. Instr. Meth. Phys. Res. B 317; XVIth International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications, December 2–7, 2012 at (Matsue, Japan, 2013), pp. 752–755CrossRefGoogle Scholar
  99. 99.
    Y. Hirayama, Y.X. Watanabe, N. Imai, H. Ishiyama, S.C. Jeong, H. Miyatake, M. Oyaizu, M. Mukai, S. Kimura, Y.H. Kim, T. Sonoda, M. Wada, M. Huyse, Y. Kudryavtsev, P.V. Duppen, Beta-decay spectroscopy of r-process nuclei with N= 126 at KEK isotope separation system, in Proceedings of the Conference on Advances in Radioactive Isotope Science (aris2014)Google Scholar
  100. 100.
    T. Kurtukian-Nieto, J. Benlliure, K.-H. Schmidt, L. Audouin, F. Becker, B. Blank, E. Casarejos, F. Farget, M. Fernández-Ordóñez, J. Giovinazzo, D. Henzlova, B. Jurado, J. Pereira, O. Yordanov, Production cross sections of heavy neutron-rich nuclei approaching the nucleosynthesis r-process path around A = 195. Phys. Rev. C 89, 024616 (2014)ADSCrossRefGoogle Scholar
  101. 101.
    A. Winther, Grazing reactions in collisions between heavy nuclei. Nucl. Phys. A 572, 191–235 (1994)ADSCrossRefGoogle Scholar
  102. 102.
    A. Winther, Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594, 203–245 (1995)ADSCrossRefGoogle Scholar
  103. 103.
    Y. Hirayama, H. Miyatake, Y.X. Watanabe, N. Imai, H. Ishiyama, S.C. Jeong, H.S. Jung, M. Oyaizu, M. Mukai, S. Kimura, T. Sonoda, M. Wada, Y.H. Kim, M. Huyse, Yu. Kudryavtsev, P. Van Duppen, Beta-decay spectroscopy of r-process nuclei around N =  126. EPJ. Web of Conf. 109, 08001 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adrian A. Valverde
    • 1
  1. 1.University of ManitobaWinnipegCanada

Personalised recommendations