Sinonasal Cancer

  • Kirsti Husgafvel-PursiainenEmail author
  • Matthieu Carton
  • Danièle Luce
  • Henrik Wolff
  • Reetta Holmila
  • Vivi Schlünssen
  • Jette Bornholdt
  • Johnni Hansen


Sinonasal cancer, the cancer of the nose and paranasal cavities, is rare with an incidence below 2/100,000 person-year; the incidence is lowest among women and with distinct differences between countries. These variations in incidence are mostly explained by differences in occupational exposure, in particular exposure to wood dust, which is by far the major risk factor. This chapter gives an overview of epidemiological studies on sinonasal cancer dealing with epidemiological evidence for various occupational risk factors, exposure characteristics, tumor pathology, findings from experimental and human studies contributing to understanding of cancer mechanisms, and, finally, with molecular alterations observed in sinonasal cancer tissue available as potential molecular markers. The main studies and their findings as well as the principal pathological features of sinonasal tumors are summarized in tables and exemplified in illustrations.


Sinonasal cancer Epidemiology Pathology Occupational factors Wood dust exposure Genotoxicity Molecular markers Mechanisms of carcinogenesis 



We thank all our colleagues who participated in the research collaboration in connection with the EU 5 FW project WOODRISK (QLK-2000-00573) and afterwards.


  1. 1.
    Forman D, Bray F, Brewster DH, Gombe Mbalawa C, Kohler B, Piñeros M, Steliarova-Foucher E, Swaminathan R, Ferlay J, editors. Cancer incidence in five continents, Vol. X, vol. 164. International Agency for Research on Cancer. IARC Scientific Publication: Lyon; 2014.Google Scholar
  2. 2.
    International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans, Wood dust and formaldehyde, vol. 62. Lyon: IARC; 1995. p. 1–405.Google Scholar
  3. 3.
    Littman AJ, Vaughan TL. Cancers of the nasal cavity and paranasal sinuses. In: Schottenfield D, Fraumeni Jr JF, editors. Cancer epidemiology and prevention. 3rd ed. New York: Oxford University Press; 2006. p. 603–19.CrossRefGoogle Scholar
  4. 4.
    International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans, A review of human carcinogens: arsenic, metals, fibres, and dusts, vol. 100C. Lyon: IARC; 2012. p. v-499.Google Scholar
  5. 5.
    Gnepp DR. Diagnostic surgical pathology of the head and neck. Philadelphia: Saunders Elsevier; 2009.Google Scholar
  6. 6.
    WHO (World Health Organization). Classification of tumours. Pathology and genetics of head and neck tumours. In: Barnes L, Eveson JW, Reichart P, Sidransky D, editors. WHO classification of tumours, vol. 9. 3rd ed. Lyon: International Agency for Research on Cancer (IARC); 2005. p. 12–42.Google Scholar
  7. 7.
    International Agency for Research on Cancer (IARC), Parkin DM, Whelan SL, Ferlay J, Raymond L, Young J, editors. Cancer incidence in five continents, VII. IARC Scientific Publications No 143. Lyon: IARC; 1997. p. v-1274.Google Scholar
  8. 8.
    Bhattacharyya N. Cancer of the nasal cavity: survival and factors influencing prognosis. Arch Otolaryngol Head Neck Surg. 2002;128:1079–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Hansen J, Olsen JH. Survival of Danish cancer patients 1943–1987. Respiratory system. APMIS Suppl. 1993;33:77–98.PubMedGoogle Scholar
  10. 10.
    Ries LAG, Young JL, Keel GE, Eisner MP, Lin YD, Horner M-J, editors. SEER survival monograph: cancer survival among adults: U.S. SEER program, 1988–2001, patient and tumor characteristics. 2007 National Cancer Institute, SEER Program. NIH Pub 07-6215. Bethesda: NIH; 2007.Google Scholar
  11. 11.
    Sant M, Allemani C, Santaquilani M, Knijn A, Marchesi F, Capocaccia R. EUROCARE-4. Survival of cancer patients diagnosed in 1995–1999. Results and commentary. Eur J Cancer. 2009;45:931–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Thorup C, Sebbesen L, Dano H, et al. Carcinoma of the nasal cavity and paranasal sinuses in Denmark 1995–2004. Acta Oncol. 2010;49:389–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Unsal AA, Kılıç S, Dubal PM, Baredes S, Eloy JA, EUROCARE-5 Working Group. A population-based comparison of European and North American sinonasal cancer survival. Auris Nasus Larynx. 2018;45(4):815–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Baan R, Grosse Y, Straif K, et al. A review of human carcinogens—Part F: chemical agents and related occupations. Lancet Oncol. 2009;10:1143–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Straif K, Benbrahim-Tallaa L, Baan R, et al. A review of human carcinogens—Part C: metals, arsenic, dusts, and fibres. Lancet Oncol. 2009;10:453–4.PubMedCrossRefGoogle Scholar
  16. 16.
    International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans, A review of human carcinogens: radiation, vol. 100D. Lyon: IARC; 2012. p. v-341.Google Scholar
  17. 17.
    International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans, Some flame retardants and textile chemicals, and exposure in the manufacturing industry, vol. 48. Lyon: IARC; 1990. p. v-345.Google Scholar
  18. 18.
    International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans, Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol, vol. 88. Lyon: IARC; 2006. p. v-478.Google Scholar
  19. 19.
    Kauppinen T, Vincent R, Liukkonen T, et al. Occupational exposure to inhalable wood dust in the member states of the European Union. Ann Occup Hyg. 2006;50(6):549–61.PubMedGoogle Scholar
  20. 20.
    International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans, Chromium, nickel and welding, vol. 49. Lyon: IARC; 1990. p. v-648.Google Scholar
  21. 21.
    Demers PA, Kogevinas M, Boffetta P, et al. Wood dust and sino-nasal cancer: pooled reanalysis of twelve case-control studies. Am J Ind Med. 1995;28:151–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Leclerc A, Luce D, Demers PA, et al. Sinonasal cancer and occupation. Results from the reanalysis of twelve case-control studies. Am J Ind Med. 1997;31:153–65.PubMedCrossRefGoogle Scholar
  23. 23.
    Luce D, Leclerc A, Begin D, et al. Sinonasal cancer and occupational exposures: a pooled analysis of 12 case-control studies. Cancer Causes Control. 2002;13:147–57.PubMedCrossRefGoogle Scholar
  24. 24.
    ‘t Mannetje A, Kogevinas M, Luce D, et al. Sinonasal cancer, occupation, and tobacco smoking in European women and men. Am J Ind Med. 1999;36:101–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Zheng W, McLaughlin JK, Chow WH, Chien HT, Blot WJ. Risk factors for cancers of the nasal cavity and paranasal sinuses among white men in the United States. Am J Epidemiol. 1993;138:965–72.PubMedCrossRefGoogle Scholar
  26. 26.
    Leclerc A, Martinez CM, Gerin M, Luce D, Brugere J. Sinonasal cancer and wood dust exposure: results from a case-control study. Am J Epidemiol. 1994;140:340–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Luce D, Leclerc A, Morcet JF, et al. Occupational risk factors for sinonasal cancer: a case-control study in France. Am J Ind Med. 1992;21:163–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Luce D, Gerin M, Leclerc A, Morcet JF, Brugere J, Goldberg M. Sinonasal cancer and occupational exposure to formaldehyde and other substances. Int J Cancer. 1993;53:224–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Luce D, Gerin M, Morcet JF, Leclerc A. Sinonasal cancer and occupational exposure to textile dust. Am J Ind Med. 1997;32:205–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Bolm-Audorff U, Vogel C, Woitowitz H. Occupation and smoking as risk factors of nasal and nasopharyngeal cancer. In: Sakurai H, editor. Occupational epidemiology. New York: Elsevier Science Publishers; 1990. p. 71–4.Google Scholar
  31. 31.
    Comba P, Battista G, Belli S, et al. A case-control study of cancer of the nose and paranasal sinuses and occupational exposures. Am J Ind Med. 1992;22:511–20.PubMedCrossRefGoogle Scholar
  32. 32.
    Comba P, Barbieri PG, Battista G, et al. Cancer of the nose and paranasal sinuses in the metal industry: a case-control study. Br J Ind Med. 1992;49:193–6.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Magnani C, Comba P, Ferraris F, Ivaldi C, Meneghin M, Terracini B. A case-control study of carcinomas of the nose and paranasal sinuses in the woolen textile manufacturing industry. Arch Environ Health. 1993;48:94–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Merler E, Baldasseroni A, Laria R, et al. On the causal association between exposure to leather dust and nasal cancer: further evidence from a case-control study. Br J Ind Med. 1986;43:91–5.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Hayes RB, Gerin M, Raatgever JW, de Bruyn A. Wood-related occupations, wood dust exposure, and sinonasal cancer. Am J Epidemiol. 1986;124:569–77.PubMedCrossRefGoogle Scholar
  36. 36.
    Hayes RB, Raatgever JW, de Bruyn A, Gerin M. Cancer of the nasal cavity and paranasal sinuses, and formaldehyde exposure. Int J Cancer. 1986;37:487–92.PubMedCrossRefGoogle Scholar
  37. 37.
    Hardell L, Johansson B, Axelson O. Epidemiological study of nasal and nasopharyngeal cancer and their relation to phenoxy acid or chlorophenol exposure. Am J Ind Med. 1982;3:247–57.PubMedCrossRefGoogle Scholar
  38. 38.
    Brinton LA, Blot WJ, Becker JA, et al. A case-control study of cancers of the nasal cavity and paranasal sinuses. Am J Epidemiol. 1984;119:896–906.PubMedCrossRefGoogle Scholar
  39. 39.
    Brinton LA, Blot WJ, Fraumeni JF Jr. Nasal cancer in the textile and clothing industries. Br J Ind Med. 1985;42:469–74.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Vaughan TL, Davis S. Wood dust exposure and squamous cell cancers of the upper respiratory tract. Am J Epidemiol. 1991;133:560–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Battista G, Cavallucci F, Comba P, Quercia A, Vindigni C, Sartorelli E. A case-referent study on nasal cancer and exposure to wood dust in the province of Siena, Italy. Scand J Work Environ Health. 1983;9:25–9.PubMedCrossRefGoogle Scholar
  42. 42.
    d’Errico A, Pasian S, Baratti A, et al. A case-control study on occupational risk factors for sino-nasal cancer. Occup Environ Med. 2009;66:448–55.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Elwood JM. Wood exposure and smoking: association with cancer of the nasal cavity and paranasal sinuses in British Columbia. Can Med Assoc J. 1981;124:1573–7.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Fukuda K, Shibata A. A case-control study of past history of nasal diseases and maxillary sinus cancer in Hokkaido, Japan. Cancer Res. 1988;48:1651–2.PubMedGoogle Scholar
  45. 45.
    Fukuda K, Kojiro M, Hirano M, Hyams VJ, Heffner D. Predominance of squamous cell carcinoma and rarity of adenocarcinoma of maxillary sinus among Japanese. Kurume Med J. 1989;36:1–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Hernberg S, Westerholm P, Schultz-Larsen K, et al. Nasal and sinonasal cancer. Connection with occupational exposures in Denmark, Finland and Sweden. Scand J Work Environ Health. 1983;9:315–26.PubMedCrossRefGoogle Scholar
  47. 47.
    Ng TP. A case-referent study of cancer of the nasal cavity and sinuses in Hong Kong. Int J Epidemiol. 1986;15:171–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Olsen JH, Jensen SP, Hink M, Faurbo K, Breum NO, Jensen OM. Occupational formaldehyde exposure and increased nasal cancer risk in man. Int J Cancer. 1984;34:639–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Olsen JH, Jensen OM. Nasal cancer and chlorophenols. Lancet. 1984;2:47–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Olsen JH, Asnaes S. Formaldehyde and the risk of squamous cell carcinoma of the sinonasal cavities. Br J Ind Med. 1986;43:769–74.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Olsen JH. Occupational risks of sinonasal cancer in Denmark. Br J Ind Med. 1988;45:329–35.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Pesch B, Pierl CB, Gebel M, et al. Occupational risks for adenocarcinoma of the nasal cavity and paranasal sinuses in the German wood industry. Occup Environ Med. 2008;65:191–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Roush GC, Meigs JW, Kelly JA, Flannery JT, Burdo H. Sinonasal cancer and occupation: a case-control study. Am J Epidemiol. 1980;111:183–93.PubMedCrossRefGoogle Scholar
  54. 54.
    Roush GC, Walrath J, Stayner LT, Kaplan SA, Flannery JT, Blair A. Nasopharyngeal cancer, sinonasal cancer, and occupations related to formaldehyde: a case-control study. J Natl Cancer Inst. 1987;79:1221–4.PubMedGoogle Scholar
  55. 55.
    Shimizu H, Hozawa J, Saito H, et al. Chronic sinusitis and woodworking as risk factors for cancer of the maxillary sinus in Northeast Japan. Laryngoscope. 1989;99:58–61.PubMedCrossRefGoogle Scholar
  56. 56.
    Takasaka T, Kawamoto K, Nakamura K. A case-control study of nasal cancers. An occupational survey. Acta Otolaryngol. 1987;435(Suppl):136–42.CrossRefGoogle Scholar
  57. 57.
    Caplan LS, Hall HI, Levine RS, Zhu K. Preventable risk factors for nasal cancer. Ann Epidemiol. 2000;10:186–91.PubMedCrossRefGoogle Scholar
  58. 58.
    Mirabelli MC, Hoppin JA, Tolbert PE, Herrick RF, Gnepp DR, Brann EA. Occupational exposure to chlorophenol and the risk of nasal and nasopharyngeal cancers among U.S. men aged 30 to 60. Am J Ind Med. 2000;37:532–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhu K, Levine RS, Brann EA, Hall HI, Caplan LS, Gnepp DR. Case-control study evaluating the homogeneity and heterogeneity of risk factors between sinonasal and nasopharyngeal cancers. Int J Cancer. 2002;99:119–23.PubMedCrossRefGoogle Scholar
  60. 60.
    Siew SS, Martinsen JI, Kjaerheim K, et al. Occupational exposure to wood dust and risk of nasal and nasopharyngeal cancer: a case-control study among men in four Nordic countries-with an emphasis on nasal adenocarcinoma. Int J Cancer. 2017;141(12):2430–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Acheson ED, Cowdell RH, Hadfield E, Macbeth RG. Nasal cancer in woodworkers in the furniture industry. Br Med J. 1968;2:587–96.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Rongo LM, Msamanga GI, Burstyn I, Barten F, Dolmans WM, Heederik D. Exposure to wood dust and endotoxin in small-scale wood industries in Tanzania. J Expo Anal Environ Epidemiol. 2004;14(7):544–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Demers PA, Boffetta P, Kogevinas M, et al. Pooled reanalysis of cancer mortality among five cohorts of workers in wood-related industries. Scand J Work Environ Health. 1995;21:179–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Siew SS, Kauppinen T, Kyyrönen P, Heikkilä P, Pukkala E. Occupational exposure to wood dust and formaldehyde and risk of nasal, nasopharyngeal, and lung cancer among Finnish men. Cancer Manag Res. 2012;4:223–32.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Binazzi A, Ferrante P, Marinaccio A. Occupational exposure and sinonasal cancer: a systematic review and meta-analysis. BMC Cancer. 2015;15:49.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Demers PA, Teschke K, Kennedy SM. What to do about softwood? A review of respiratory effects and recommendations regarding exposure limits. Am J Ind Med. 1997;31:385–98.PubMedCrossRefGoogle Scholar
  67. 67.
    International Agency for Research on Cancer (IARC), Demers PA, Boffetta P, editors. Cancer risk from occupational exposure to wood dust, A pooled analysis of epidemiological studies. IARC technical report no. 30. Lyon: IARC; 1998. p. i-97.Google Scholar
  68. 68.
    Scientific Committee group on Occupational Exposure Limits (SCOEL). Wood dust. Luxembourg: European Commission; 2003. SCOEL/INF/576.Google Scholar
  69. 69.
    International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans, Wood, leather and some associated industries, vol. 25. Lyon: IARC; 1981. p. v-421.Google Scholar
  70. 70.
    International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans, Tobacco smoke and involuntary smoking, vol. 83. Lyon: IARC; 2004. p. v-1452.Google Scholar
  71. 71.
    International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans, A review of human carcinogens: personal habits and indoor combustions, vol. 100E. Lyon: IARC; 2012. p. v-579.Google Scholar
  72. 72.
    Acheson ED, Pippard EC, Winter PD. Nasal cancer in the Northamptonshire boot and shoe industry: is it declining? Br J Cancer. 1982;46:940–6.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pippard EC, Acheson ED. The mortality of boot and shoe makers, with special reference to cancer. Scand J Work Environ Health. 1985;11:249–55.PubMedCrossRefGoogle Scholar
  74. 74.
    Andersen A, Barlow L, Engeland A, Kjaerheim K, Lynge E, Pukkala E. Work-related cancer in the Nordic countries. Scand J Work Environ Health. 1999;25(Suppl 2):1–116.PubMedGoogle Scholar
  75. 75.
    Cecchi F, Buiatti E, Kriebel D, Nastasi L, Santucci M. Adenocarcinoma of the nose and paranasal sinuses in shoemakers and woodworkers in the province of Florence, Italy (1963–77). Br J Ind Med. 1980;37:222–5.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Luippold RS, Mundt KA, Dell LD, Birk T. Low-level hexavalent chromium exposure and rate of mortality among US chromate production employees. J Occup Environ Med. 2005;47:381–5.PubMedCrossRefGoogle Scholar
  77. 77.
    International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans, A review of human carcinogens: chemical agents and related occupations, vol. 100F. Lyon: IARC; 2012. p. v-499.Google Scholar
  78. 78.
    Swenberg JA, Kerns WD, Mitchell RI, Gralla EJ, Pavkov KL. Induction of squamous cell carcinomas of the rat nasal cavity by inhalation exposure to formaldehyde vapor. Cancer Res. 1980;40:3398–402.PubMedGoogle Scholar
  79. 79.
    Bertazzi PA, Pesatori AC, Radice L, Zocchetti C, Vai T. Exposure to formaldehyde and cancer mortality in a cohort of workers producing resins. Scand J Work Environ Health. 1986;12:461–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Edling C, Jarvholm B, Andersson L, Axelson O. Mortality and cancer incidence among workers in an abrasive manufacturing industry. Br J Ind Med. 1987;44:57–9.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Bertazzi PA, Pesatori A, Guercilena S, Consonni D, Zocchetti C. Carcinogenic risk for resin producers exposed to formaldehyde: extension of follow-up. Med Lav. 1989;80:111–22.PubMedGoogle Scholar
  82. 82.
    Andjelkovich DA, Janszen DB, Brown MH, Richardson RB, Miller FJ. Mortality of iron foundry workers: IV. Analysis of a subcohort exposed to formaldehyde. J Occup Environ Med. 1995;37:826–37.PubMedCrossRefGoogle Scholar
  83. 83.
    Hansen J, Olsen JH. Formaldehyde and cancer morbidity among male employees in Denmark. Cancer Causes Control. 1995;6:354–60.CrossRefGoogle Scholar
  84. 84.
    Hansen J, Olsen JH. Occupational exposure to formaldehyde and risk of cancer. Ugeskr Laeger. 1996;158:4191–4.PubMedGoogle Scholar
  85. 85.
    Coggon D, Harris EC, Poole J, Palmer KT. Extended follow-up of a cohort of British chemical workers exposed to formaldehyde. J Natl Cancer Inst. 2003;95:1608–15.PubMedCrossRefGoogle Scholar
  86. 86.
    Hauptmann M, Lubin JH, Stewart PA, Hayes RB, Blair A. Mortality from solid cancers among workers in formaldehyde industries. Am J Epidemiol. 2004;159:1117–30.CrossRefGoogle Scholar
  87. 87.
    Pinkerton LE, Hein MJ, Stayner LT. Mortality among a cohort of garment workers exposed to formaldehyde: an update. Occup Environ Med. 2004;61:193–200.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Walrath J, Fraumeni JF Jr. Mortality patterns among embalmers. Int J Cancer. 1983;31:407–11.PubMedCrossRefGoogle Scholar
  89. 89.
    Walrath J, Fraumeni JF Jr. Cancer and other causes of death among embalmers. Cancer Res. 1984;44:4638–41.Google Scholar
  90. 90.
    Levine RJ, Andjelkovich DA, Shaw LK. The mortality of Ontario undertakers and a review of formaldehyde-related mortality studies. J Occup Med. 1984;26:740–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Stroup NE, Blair A, Erikson GE. Brain cancer and other causes of death in anatomists. J Natl Cancer Inst. 1986;77:1217–24.PubMedGoogle Scholar
  92. 92.
    Hayes RB, Blair A, Stewart PA, Herrick RF, Mahar H. Mortality of U.S. embalmers and funeral directors. Am J Ind Med. 1990;18:641–52.PubMedCrossRefGoogle Scholar
  93. 93.
    Acheson ED, Cowdell RH, Rang EH. Nasal cancer in England and Wales: an occupational survey. Br J Ind Med. 1981;38:218–24.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Christensen MS, Hansen J, Ramlau-Hansen CH, Toft G, Kolstad H. Cancer incidence in workers exposed to styrene in the Danish-reinforced plastics industry, 1968-2012. Epidemiology. 2017;28(2):300–10.PubMedCrossRefGoogle Scholar
  95. 95.
    Secretan B, Straif K, Baan R, et al. A review of human carcinogens–Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol. 2009;10:1033–4.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Sasco AJ, Secretan MB, Straif K. Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung Cancer. 2004;45(Suppl 2):S3–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Bouvard V, Baan R, Straif K, et al. A review of human carcinogens—part B: biological agents. Lancet Oncol. 1990;10:321–2.CrossRefGoogle Scholar
  98. 98.
    International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans, A review of human carcinogens: biological agents, vol. 100B. Lyon: IARC; 2012. p. v-475.Google Scholar
  99. 99.
    Bishop JA, Guo TW, Smith DF, Wang H, Ogawa T, Pai SI, et al. Human papillomavirus-related carcinomas of the sinonasal tract. Am J Surg Pathol. 2013;37:185–92.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Thavaraj S. Human papillomavirus-associated neoplasms of the sinonasal tract and nasopharynx. Semin Diagn Pathol. 2016;33:10411.CrossRefGoogle Scholar
  101. 101.
    WHO (World Health Oranization) Classification of tumours, El-Naggar A, Chan L, Grandis J, Takata T, Slootweg P. Tumours of the nasal cavity, paranasal sinuses and skull base. In: WHO classification of head and neck tumours. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2017. p. 11–42.Google Scholar
  102. 102.
    Roush GC. Epidemiology of cancer of the nose and paranasal sinuses: current concepts. Head Neck Surg. 1979;2:3–11.PubMedCrossRefGoogle Scholar
  103. 103.
    Robin PE, Powell DJ, Stansbie JM. Carcinoma of the nasal cavity and paranasal sinuses: incidence and presentation of different histological types. Clin Otolaryngol Allied Sci. 1979;4:431–56.PubMedCrossRefGoogle Scholar
  104. 104.
    Sobin L, Wittekind C, editors. TNM classification of malignant tumours. 6th ed. New York: Wiley; 2002.Google Scholar
  105. 105.
    Muir C, Weiland L. Upper aerodigestive tract cancers. Cancer. 1995;75:147–53.PubMedCrossRefGoogle Scholar
  106. 106.
    Klintenberg C, Olofsson J, Hellquist H, Sokjer H. Adenocarcinoma of the ethmoid sinuses. A review of 28 cases with special reference to wood dust exposure. Cancer. 1984;54:482–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Barnes L. Intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses. Am J Surg Pathol. 1986;10:192–202.PubMedCrossRefGoogle Scholar
  108. 108.
    Kleinsasser O, Schroeder HG. Adenocarcinomas of the inner nose after exposure to wood dust. Morphological findings and relationships between histopathology and clinical behavior in 79 cases. Arch Otorhinolaryngol. 1988;245:1–15.PubMedCrossRefGoogle Scholar
  109. 109.
    Franchi A, Massi D, Palomba A, Biancalani M, Santucci M. CDX-2, cytokeratin 7 and cytokeratin 20 immunohistochemical expression in the differential diagnosis of primary adenocarcinomas of the sinonasal tract. Virchows Arch. 2004;445:63–7.PubMedGoogle Scholar
  110. 110.
    Kennedy MT, Jordan RC, Berean KW, Perez-Ordonez B. Expression pattern of CK7, CK20, CDX-2, and villin in intestinal-type sinonasal adenocarcinoma. J Clin Pathol. 2004;57:932–7.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Resto VA, Krane JF, Faquin WC, Lin DT. Immunohistochemical distinction of intestinal-type sinonasal adenocarcinoma from metastatic adenocarcinoma of intestinal origin. Ann Otol Rhinol Laryngol. 2006;115:59–64.PubMedCrossRefGoogle Scholar
  112. 112.
    Tilson MP, Gallia GL, Bishop JA. Among sinonasal tumors, CDX-2 immunoexpression is not restricted to intestinal-type adenocarcinomas. Head Neck Pathol. 2014;8(1):59–65.PubMedCrossRefGoogle Scholar
  113. 113.
    Vivanco B, Llorente JL, Perez-Escuredo J, Alvarez Marcos C, Fresno MF, Hermsen MA. Benign lesions in mucosa adjacent to intestinal-type sinonasal adenocarcinoma. Pathol Res Int. 2011;Article ID 230147; 8 pages. Scholar
  114. 114.
    Wilhelmsson B, Lundh B. Nasal epithelium in woodworkers in the furniture industry. A histological and cytological study. Acta Otolaryngol. 1984;98:321–34.PubMedCrossRefGoogle Scholar
  115. 115.
    Valente G, Ferrari L, Kerim S, et al. Evidence of p53 immunohistochemical overexpression in ethmoidal mucosa of woodworkers. Cancer Detect Prev. 2004;28:99–106.PubMedCrossRefGoogle Scholar
  116. 116.
    Heffner DK, Hyams VJ, Hauck KW, Lingeman C. Low-grade adenocarcinoma of the nasal cavity and paranasal sinuses. Cancer. 1982;50:312–22.PubMedCrossRefGoogle Scholar
  117. 117.
    Stelow EB, Jo VY, Mills SE, Carlson DL. A histologic and immunohistochemical study describing the diversity of tumors classified as sinonasal high-grade nonintestinal adenocarcinomas. Am J Surg Pathol. 2011;35:971–80.PubMedCrossRefGoogle Scholar
  118. 118.
    Purgina B, Bastaki JM, Duvvuri U, Seethala RR. A subset of sinonasal non-intestinal type adenocarcinomas are truly seromucinous adenocarcinomas: a morphologic and immunophenotypic assessment and description of a novel pitfall. Head Neck Pathol. 2015;9(4):436–46.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Wolff H, Leivo I, Holmila R, Luce D, Husgafvel-Pursiainen K. Differential occurrence of sinonasal Intestinal Type Adenocarcinoma (ITAC) and sinonasal non-ITAC in Finland and France and their association with wood dust exposure. Virchows Arch. 2013;463(2):114.Google Scholar
  120. 120.
    Sunderman FW. Nasal toxicity, carcinogenicity, and olfactory uptake of metals. Ann Clin Lab Sci. 2001;31:3–24.PubMedGoogle Scholar
  121. 121.
    Monks TJ, Jones DC. The metabolism and toxicity of quinones, quinonimines, quinone methides, quinone-thioethers. Curr Drug Metab. 2002;3:425–38.PubMedCrossRefGoogle Scholar
  122. 122.
    Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008;585:325–37.PubMedCrossRefGoogle Scholar
  123. 123.
    Feron VJ, Arts JHE, Kuper CF, Slootweg PJ, Woutersen RA. Health risks associated with inhaled nasal toxicants. Crit Rev Toxicol. 2001;31:313–47.PubMedCrossRefGoogle Scholar
  124. 124.
    Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Kuper CF, Woutersen RA, Slootweg PJ, Feron VJ. Carcinogenic response of the nasal cavity to inhaled chemical mixtures. Mutat Res. 1997;380:19–26.PubMedCrossRefGoogle Scholar
  126. 126.
    Klein RG, Schmezer P, Amelung F, Schroeder H-G, Woeste W, Wolf J. Carcinogenicity assays of wood dust and wood additives in rats exposed by long-term inhalation. Int Arch Occup Environ Health. 2001;74:109–18.PubMedCrossRefGoogle Scholar
  127. 127.
    Zhou ZC, Norpoth KH, Nelson E. Genotoxicity of wood dust in a human embryonic lung cell line. Arch Toxicol. 1995;70(1):57–60.PubMedCrossRefGoogle Scholar
  128. 128.
    Bornholdt J, Saber AT, Sharma AK, Savolainen K, Vogel U, Wallin H. Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549. Mutat Res. 2007;632:78–88.PubMedCrossRefGoogle Scholar
  129. 129.
    Long H, Shi T, Borm PJ, et al. ROS-mediated TNF-α and MIP-2 gene expression in alveolar macrophages exposed to pine dust. Part Fibre Toxicol. 2004;1:3. Scholar
  130. 130.
    Määttä J, Majuri M-L, Luukkonen R, et al. Characterization of oak and birch dust-induced expression of cytokines and chemokines in mouse macrophage RAW 264.7 cells. Toxicology. 2005;215:25–36.PubMedCrossRefGoogle Scholar
  131. 131.
    Määttä J, Luukkonen R, Husgafvel-Pursiainen K, Alenius H, Savolainen K. Comparison of hardwood and softwood dust-induced expression of cytokines and chemokines in mouse macrophage RAW 264.7 cells. Toxicology. 2006a;218:13–21.PubMedCrossRefGoogle Scholar
  132. 132.
    Naarala J, Kasanen J-P, Pasanen P, et al. The effects of wood dusts on the redox status and cell death in mouse macrophages (RAW 264.7) and human leukocytes in vitro. J Toxicol Environ Health. 2003;66(A):1221–35.CrossRefGoogle Scholar
  133. 133.
    Määttä J, Lehto M, Leino M, et al. Mechanisms of particle-induced pulmonary inflammation in a mouse model: exposure to wood dust. Toxicol Sci. 2006b;93:96–104.PubMedCrossRefGoogle Scholar
  134. 134.
    Määttä J, Haapakoski R, Leino M, et al. Immunomodulatory effects of oak dust exposure in a murine model of allergic asthma. Toxicol Sci. 2007;99:260–6.PubMedCrossRefGoogle Scholar
  135. 135.
    Palus J, Dziubaltowska E, Rydzynski K. DNA single-strand breaks and DNA repair in the lymphocytes of wooden furniture workers. Mutat Res. 1998;408:91–101.PubMedCrossRefGoogle Scholar
  136. 136.
    Palus J, Dziubaltowska E, Rydzynski K. DNA damage detected by the comet assay in the white blood cell of workers in a wooden furniture plant. Mutat Res. 1999;444:61–74.PubMedCrossRefGoogle Scholar
  137. 137.
    Çelik A, Kanik A. Genotoxicity and occupational exposure to wood dust: micronucleus frequency and nuclear changes in exfoliated buccal mucosa cells. Environ Mol Mutagen. 2006;47:693–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Elavarasi D, Ramakrishnan V, Subramoniam T, Ramesh A, Cherian KM, Emmanuel C. Genotoxicity study in lymphocytes of workers in wooden industry. Curr Sci. 2002;82(7):869–973.Google Scholar
  139. 139.
    Rekhadevi PV, Mahboob M, Rahman MF, Grover P. Genetic damage in wood dust-exposed workers. Mutagenesis. 2009;24(1):59–65.PubMedCrossRefGoogle Scholar
  140. 140.
    Bruschweiler ED, Hopf NB, Wild P, Huynh CK, Fenech M, Thomas P, Hor M, Charriere N, Savova-Bianchi D, Danuser B. Workers exposed to wood dust have an increased micronucleus frequency in nasal and buccal cells: results from a pilot study. Mutagenesis. 2014;29(3):201–7.PubMedCrossRefGoogle Scholar
  141. 141.
    Bruschweiler ED, Wild P, Huynh CK, Savova-Bianchi D, Danuser B, Hopf NB. DNA damage among wood workers assessed with the comet assay. Environ Health Insights. 2016;10:105–12. Scholar
  142. 142.
    Wultsch G, Nersesyan A, Kundi M, Wagner KH, Ferk F, Jakse R, Knasmueller S. Impact of exposure to wood dust on genotoxicity and cytotoxicity in exfoliated buccal and nasal cells. Mutagenesis. 2015;30(5):701–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Goldsmith DF, Shy CM. An epidemiologic study of respiratory health effects in a group of North Carolina furniture workers. J Occup Med. 1988;30(12):959–65.PubMedCrossRefGoogle Scholar
  144. 144.
    Jacobsen G, Schaumburg I, Sigsgaard T, Schlunssen V. Non-malignant respiratory diseases and occupational exposure to wood dust. Part I. Fresh wood and mixed wood industry. Ann Agric Environ Med. 2010;17(1):15–28.PubMedGoogle Scholar
  145. 145.
    Jacobsen G, Schaumburg I, Sigsgaard T, Schlunssen V. Non-malignant respiratory diseases and occupational exposure to wood dust. Part II. Dry wood industry. Ann Agric Environ Med. 2010;17(1):29–44.PubMedGoogle Scholar
  146. 146.
    The American Conference of Governmental Industrial Hygienists (ACGIH®). Threshold Limit Values® for chemical substances and physical agents & biological exposure indices. Wood dusts. 7th ed. ACGIH® 2015. 23 p.Google Scholar
  147. 147.
    Chan-Yeung M, Vedal S, Kus J, MacLean L, Enarson D, Tse KS. Symptoms, pulmonary function, and bronchial hyperreactivity in western red cedar workers compared with those in office workers. Am Rev Respir Dis. 1984;130(6):1038–41.PubMedGoogle Scholar
  148. 148.
    Pérez-Ríos M, Ruano-Ravina A, Etminan M, Takkouche B. A meta-analysis on wood dust exposure and risk of asthma. Allergy. 2010;65(4):467–73.PubMedCrossRefGoogle Scholar
  149. 149.
    Carlsten C, Dybuncio A, Pui MM, Chan-Yeung M. Respiratory impairment and systemic inflammation in cedar asthmatics removed from exposure. PLoS One. 2013;8(2):e57166. Scholar
  150. 150.
    Wiggans RE, Evans G, Fishwick D, Barber CM. Asthma in furniture and wood processing workers: a systematic review. Occup Med (Lond). 2016;66(3):193–201. Scholar
  151. 151.
    Llorente JL, Perez-Escuredo J, Alvarez-Marcos C, Suarez C, Hermsen M. Genetic and clinical aspects of wood dust related intestinal-type sinonasal adenocarcinoma: a review. Eur Arch Otorhinolaryngol. 2009;266:1–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Holmila R, Cyr D, Luce D, et al. COX-2 and p53 in human sinonasal cancer: COX-2 expression is associated with adenocarcinoma histology and wood-dust exposure. Int J Cancer. 2008;122:2154–9.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Saber AT, Nielsen LR, Dictor M, Hagmar L, Mikoczy Z, Wallin H. K-ras mutations in sinonasal adenocarcinomas in patients occupationally exposed to wood or leather dust. Cancer Lett. 1998;126(1):59–65.PubMedCrossRefGoogle Scholar
  154. 154.
    Bornholdt J, Hansen J, Steiniche T, et al. K-ras mutations in sinonasal cancers in relation to wood dust exposure. BMC Cancer. 2008;8:53.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Holmila R, Bornholdt J, Heikkila P, et al. Mutations in TP53 tumor suppressor gene in wood dust-related sinonasal cancer. Int J Cancer. 2010;127:578–88.PubMedCrossRefGoogle Scholar
  156. 156.
    Holmila R, Bornholdt J, Suitiala T, et al. Profile of TP53 gene mutations in sinonasal cancer. Mutat Res. 2010;686:9–14.PubMedCrossRefGoogle Scholar
  157. 157.
    Pérez-Escuredo J, Martinez JG, Vivanco B, et al. Wood dust-related mutational profile of TP53 mutations in intestinal-type sinonasal adenocarcinoma. Hum Pathol. 2012;43:1894–901.PubMedCrossRefGoogle Scholar
  158. 158.
    Perrone F, Oggionni M, Birindelli S, et al. TP53, p14ARF, p16INK4a and H-ras gene molecular analysis in intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses. Int J Cancer. 2003;105(2):196–203.PubMedCrossRefGoogle Scholar
  159. 159.
    Korinth D, Pacyna-Gengelbach M, Deutschmann N, et al. Chromosomal imbalances in wood dust-related adenocarcinomas of the inner nose and their associations with pathological parameters. J Pathol. 2005;207(2):207–15.PubMedCrossRefGoogle Scholar
  160. 160.
    Franchi A, Miligi L, Palomba A, Giovannetti L, Santucci M. Sinonasal carcinomas: recent advances in molecular and phenotypic characterization and their clinical implications. Crit Rev Oncol Hematol. 2011;79(3):265–77.PubMedCrossRefGoogle Scholar
  161. 161.
    Frattini M, Perrone F, Suardi S, et al. Phenotype-genotype correlation: challenge of intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses. Head Neck. 2006;28(10):909–15.PubMedCrossRefGoogle Scholar
  162. 162.
    López F, García Inlcán C, Pérez-Escuredo J, et al. KRAS and BRAF mutations in sinonasal cancer. Oral Oncol. 2012;48:629–97.CrossRefGoogle Scholar
  163. 163.
    Gárcia-Inclán C, López F, Pérez-Escuredo J, et al. EGFR status and KRAS/BRAF mutations in intestinal type sinonasal adenocarcinomas. Cell Oncol. 2012;35:443–50.CrossRefGoogle Scholar
  164. 164.
    Ariza M, Llorente JL, Alvarez-Marcas C, et al. Comparative genomic hybridization in primary sinonasal adenocarcinomas. Cancer. 2004;100(2):335–41.PubMedCrossRefGoogle Scholar
  165. 165.
    Hermsen MA, Llorente JL, Perez-Escuredo J, et al. Genome-wide analysis of genetic changes in intestinal-type sinonasal adenocarcinoma. Head Neck. 2009;31(3):290–7.PubMedCrossRefGoogle Scholar
  166. 166.
    Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9:749–58.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413–31.PubMedCrossRefGoogle Scholar
  168. 168.
    Partridge M, Costea DE, Huang X. The changing face of p53 in head and neck cancer. Int J Oral Maxillofac Surg. 2007;36(12):1123–38.PubMedCrossRefGoogle Scholar
  169. 169.
    Goh AM, Coffill CR, Lane DP. The role of mutant p53 in human cancer. J Pathol. 2011;223(2):116–26.PubMedCrossRefGoogle Scholar
  170. 170.
    Bashir AA, Robinson RA, Benda JA, Smith RB. Sinonasal adenocarcinoma: immunohistochemical marking and expression of oncoproteins. Head Neck. 2003;25(9):763–71.PubMedCrossRefGoogle Scholar
  171. 171.
    Yom SS, Rashid A, Rosenthal DI, et al. Genetic analysis of sinonasal adenocarcinoma phenotypes: distinct alterations of histogenetic significance. Mod Pathol. 2005;18(3):315–9.PubMedCrossRefGoogle Scholar
  172. 172.
    Wang X, Lv W, Qi F, et al. Clinical effects of p53 overexpression in squamous cell carcinoma of the sinonasal tract: a systematic meta-analysis with PRISMA guidelines. Medicine (Baltimore). 2017;96(12):e6424.CrossRefGoogle Scholar
  173. 173.
    Re M, Magliulo G, Tarchini P, et al. p53 and BCL-2 over-expression inversely correlates with histological differentiation in occupational ethmoidal intestinal-type sinonasal adenocarcinoma. Int J Immunopathol Pharmacol. 2011;24(3):603–9.PubMedCrossRefGoogle Scholar
  174. 174.
    Vivanco Allende B, Perez-Escuredo J, Fuentes Martinez N, et al. Intestinal-type sinonasal adenocarcinomas. Immunohistochemical profile of 66 cases. Acta Otorrinolaringol Esp. 2013;64(2):115–23.PubMedCrossRefGoogle Scholar
  175. 175.
    Franchi A, Palomba A, Fondi C, et al. Immunohistochemical investigation of tumorigenic pathways in sinonasal intestinal-type adenocarcinoma. A tissue array of 62 cases. Histopathology. 2011;59:98–105.PubMedCrossRefGoogle Scholar
  176. 176.
    Bandoh N, Hayashi T, Kishibe K, et al. Prognostic value of p53 mutations, bax, and spontaneous apoptosis in maxillary sinus squamous cell carcinoma. Cancer. 2002;94(7):1968–80.PubMedCrossRefGoogle Scholar
  177. 177.
    Licitra L, Suardi S, Bossi P, et al. Prediction of TP53 status for primary cisplatin, fluorouracil, and leucovorin chemotherapy in ethmoid sinus intestinal-type adenocarcinoma. J Clin Oncol. 2004;22(24):4901–6.PubMedCrossRefGoogle Scholar
  178. 178.
    Wu TT, Barnes L, Bakker A, Swalsky PA, Finkelstein SD. K-ras-2 and p53 genotyping of intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses. Mod Pathol. 1996;9(3):199–204.PubMedGoogle Scholar
  179. 179.
    Doescher J, Piontek G, Wirth M, et al. Epstein-Barr virus infection is strictly associated with the metastatic spread of sinonasal squamous-cell carcinomas. Oral Oncol. 2015;51(10):929–34.PubMedCrossRefGoogle Scholar
  180. 180.
    Bouaoun L, Sonkin D, Ardin M, et al. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum Mutat. 2016;37(9):865–76.PubMedCrossRefGoogle Scholar
  181. 181.
    Bossi P, Perrone F, Miceli R, et al. Tp53 status as guide for the management of ethmoid sinus intestinal-type adenocarcinoma. Oral Oncol. 2013;49(5):413–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Lopez F, Llorente JL, Oviedo CM, et al. Gene amplification and protein overexpression of EGFR and ERBB2 in sinonasal squamous cell carcinoma. Cancer. 2012;118:1818–26.PubMedCrossRefGoogle Scholar
  183. 183.
    Lopez F, Llorente JL, Garcia-Inclan C, et al. Genomic profiling of sinonasal squamous cell carcinoma. Head Neck. 2011;33(2):145–53.PubMedCrossRefGoogle Scholar
  184. 184.
    Perez-Escuredo J, Lopez-Hernandez A, Costales M, et al. Recurrent DNA copy number alterations in intestinal-type sinonasal adenocarcinoma. Rhinology. 2016;54(3):278–86.PubMedCrossRefGoogle Scholar
  185. 185.
    Lichtenstein P, Holm NV, Verkasalo PK, et al. Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343(2):78–85.PubMedCrossRefGoogle Scholar
  186. 186.
    Fletcher O, Houlston RS. Architecture of inherited susceptibility to common cancer. Nat Rev Cancer. 2010;10(5):353–61.PubMedCrossRefGoogle Scholar
  187. 187.
    Pastore E, Perrone F, Orsenigo M, et al. Polymorphisms of metabolizing enzymes and susceptibility to ethmoid intestinal-type adenocarcinoma in professionally exposed patients. Transl Oncol. 2009;2(2):84–8.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Dogan S, Chute DJ, Xu B, et al. Frequent IDH2 R172 mutations in undifferentiated and poorly-differentiated sinonasal carcinomas. J Pathol. 2017;242(4):400–8.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Jo VY, Chau NG, Hornick JL, Krane JF, Sholl LM. Recurrent IDH2 R172X mutations in sinonasal undifferentiated carcinoma. Mod Pathol. 2017;30(5):650–9.PubMedCrossRefGoogle Scholar
  190. 190.
    López-Hernández A, Vivanco B, Franchi A, et al. Genetic profiling of poorly differentiated sinonasal tumours. Sci Rep. 2018;8(1):3998. Scholar
  191. 191.
    Herceg Z, Ghantous A, Wild CP, et al. Roadmap for investigating epigenome deregulation and environmental origins of cancer. Int J Cancer. 2018;142(5):874–82.PubMedCrossRefGoogle Scholar
  192. 192.
    Ginder GD, Williams DC Jr. Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol Ther. 2018;184:98–111. pii: S0163-7258(17)30286-3.CrossRefPubMedGoogle Scholar
  193. 193.
    Chmelarova M, Sirak I, Mzik M, et al. Importance of tumour suppressor gene methylation in sinonasal carcinomas. Folia Biol (Praha). 2016;62(3):110–9.Google Scholar
  194. 194.
    Costales M, Lopez-Hernandez A, Garcia-Inclan C, et al. Gene methylation profiling in sinonasal adenocarcinoma and squamous cell carcinoma. Otolaryngol Head Neck Surg. 2016;155(5):808–15.PubMedCrossRefGoogle Scholar
  195. 195.
    Meng LZ, Fang JG, Sun JW, Yang F, Wei YX. Aberrant expression profile of long noncoding RNA in human sinonasal squamous cell carcinoma by microarray analysis. Biomed Res Int. 2016;2016:1095710. 10 pages. Scholar
  196. 196.
    Ogawa T, Saiki Y, Shiga K, et al. miR-34a is downregulated in cis-diamminedichloroplatinum treated sinonasal squamous cell carcinoma patients with poor prognosis. Cancer Sci. 2012;103(9):1737–43.PubMedCrossRefGoogle Scholar
  197. 197.
    Yan L, Zhan C, Wang S, Wang S, Guo L. Genetic analysis of radiation-specific biomarkers in sinonasal squamous cell carcinomas. Tumour Biol. 2016;37(9):12001–9.PubMedCrossRefGoogle Scholar
  198. 198.
    Wirth M, Doescher J, Jira D, et al. HES1 mRNA expression is associated with survival in sinonasal squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(4):491–9.PubMedCrossRefGoogle Scholar
  199. 199.
    Tripodi D, Quemener S, Renaudin K, et al. Gene expression profiling in sinonasal adenocarcinoma. BMC Med Genet. 2009;2:65.Google Scholar
  200. 200.
    Projetti F, Durand K, Chaunavel A, et al. Epidermal growth factor receptor expression and KRAS and BRAF mutations: study of 39 sinonasal intestinal-type adenocarcinomas. Hum Pathol. 2013;44(10):2116–25.PubMedCrossRefGoogle Scholar
  201. 201.
    Szablewski V, Solassol J, Poizat F, et al. EGFR expression and KRAS and BRAF mutational status in intestinal-type sinonasal adenocarcinoma. Int J Mol Sci. 2013;14(3):5170–81.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Franchi A, Fondi C, Paglierani M, et al. Epidermal growth factor receptor expression and gene copy number in sinonasal intestinal type adenocarcinoma. Oral Oncol. 2009;45(9):835–8.PubMedCrossRefGoogle Scholar
  203. 203.
    Chernock RD, Perry A, Pfeifer JD, Holden JA, Lewis JS Jr. Receptor tyrosine kinases in sinonasal undifferentiated carcinomas—evaluation for EGFR, c-KIT, and HER2/neu expression. Head Neck. 2009;31(7):919–27.PubMedCrossRefGoogle Scholar
  204. 204.
    Projetti F, Mesturoux L, Coulibaly B, et al. Study of MET protein levels and MET gene copy number in 72 sinonasal intestinal-type adenocarcinomas. Head Neck. 2015;3(11):1563–8.CrossRefGoogle Scholar
  205. 205.
    Stasikowska-Kanicka O, Wagrowska-Danilewicz M, Danilewicz M. Immunohistochemical study EMT-related proteins in HPV-, and EBV-negative patients with sinonasal tumours. Pathol Oncol Res. 2016;22(4):781–8.PubMedCrossRefGoogle Scholar
  206. 206.
    Yamashita Y, Hasegawa M, Deng Z, et al. Human papillomavirus infection and immunohistochemical expression of cell cycle proteins pRb, p53, and p16(INK4a) in sinonasal diseases. Infect Agent Cancer. 2015;10:23.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Rodrigo JP, Garcia-Pedrero JM, Llorente JL, et al. Down-regulation of annexin A1 and A2 protein expression in intestinal-type sinonasal adenocarcinomas. Hum Pathol. 2011;42(1):88–94.PubMedCrossRefGoogle Scholar
  208. 208.
    Pirrone C, Chiaravalli AM, Marando A, et al. OTX1 and OTX2 as possible molecular markers of sinonasal carcinomas and olfactory neuroblastomas. Eur J Histochem. 2017;61(1):2730.PubMedPubMedCentralGoogle Scholar
  209. 209.
    Wadsworth B, Bumpous JM, Martin AW, et al. Expression of p16 in sinonasal undifferentiated carcinoma (SNUC) without associated human papillomavirus (HPV). Head Neck Pathol. 2011;5(4):349–54.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Syrjanen K, Syrjanen S. Detection of human papillomavirus in sinonasal carcinoma: systematic review and meta-analysis. Hum Pathol. 2013;44(6):983–91.PubMedCrossRefGoogle Scholar
  211. 211.
    Isayeva T, Li Y, Maswahu D, Brandwein-Gensler M. Human papillomavirus in non-oropharyngeal head and neck cancers: a systematic literature review. Head Neck Pathol. 2012;6(Suppl 1):S104–20.PubMedCrossRefGoogle Scholar
  212. 212.
    Alos L, Moyano S, Nadal A, et al. Human papillomaviruses are identified in a subgroup of sinonasal squamous cell carcinomas with favorable outcome. Cancer. 2009;115(12):2701–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kirsti Husgafvel-Pursiainen
    • 1
    Email author
  • Matthieu Carton
    • 2
  • Danièle Luce
    • 3
  • Henrik Wolff
    • 4
  • Reetta Holmila
    • 5
  • Vivi Schlünssen
    • 6
  • Jette Bornholdt
    • 7
  • Johnni Hansen
    • 8
  1. 1.Research and Service Centre for Occupational HealthFinnish Institute of Occupational HealthHelsinkiFinland
  2. 2.Institut CuriePSL Research University, BiometrySaint-CloudFrance
  3. 3.Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)Pointe-à-PitreFrance
  4. 4.Work Environment Laboratories/PathologyFinnish Institute of Occupational HealthHelsinkiFinland
  5. 5.Molecular Medicine, Department of Internal MedicineWake Forest Baptist Medical HealthWinston-SalemUSA
  6. 6.Department of Public Health, Section for Environment, Occupation and Health, Danish Ramazzini CenterAarhus University, Aarhus, and National Research Center for the Working EnvironmentCopenhagenDenmark
  7. 7.Department of Biology, The Bioinformatics CentreUniversity of CopenhagenCopenhagenDenmark
  8. 8.Research Center, Danish Cancer SocietyCopenhagenDenmark

Personalised recommendations