Advertisement

Strategies for Primary Prevention of Occupational Cancer

  • Per GustavssonEmail author
Chapter
  • 21 Downloads

Abstract

Primary prevention of cancer refers to the prevention of new cases of cancer, whereas secondary prevention is aimed at reducing the negative health effects of the disease by early detection or treatment. There are three basic steps in the process of cancer prevention: risk identification, risk quantification, and risk reduction. These are discussed in detail below, after an introduction presenting the burden of occupational cancer and a review of the process in the identification and prevention of some well-established occupational carcinogens.

Keywords

Occupational cancer Primary prevention Risk identification Risk quantification Risk elimination 

References

  1. 1.
    GLOBOCAN. 2012. Website: www.globocan.iarc.fr. Accessed 15 Aug 2011, 12 July 2017.
  2. 2.
    Adami HO, Day NE, Trichopoulos D, et al. Primary and secondary prevention in the reduction of cancer morbidity and mortality. Eur J Cancer. 2001;37(Suppl 8):S118–27.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Danaei G, Vander Hoorn S, Lopez AD, et al. Comparative risk assessment collaborating group (cancers). Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet. 2005;366(9499):1784–93.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Doll R, Peto J. The causes of cancer, 1981. J Natl Cancer Inst. 1981;66(6):1191–308.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Rushton L, Bagga S, Bevan R, et al. Occupation and cancer in Britain. Br J Cancer. 2010;102(9):1428–37.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Nurminen M, Karjalainen A. Epidemiologic estimate of the proportion of fatalities related to occupational factors in Finland. Scand J Work Environ Health. 2001;27(3):161–213.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Landrigan PJ. The prevention of occupational cancer. CA Cancer J Clin. 1996;46(2):67–9.PubMedCrossRefGoogle Scholar
  8. 8.
    International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Painting, firefighting, and shiftwork, vol. 98. Lyon: International Agency for Research on Cancer; 2010.Google Scholar
  9. 9.
    International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Polynuclear aromatic compounds. Part 4: Bitumen, coal-tars and derived products, vol. 33. Lyon: International Agency for Research on Cancer; 1984.Google Scholar
  10. 10.
    International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures, vol. 92. Lyon: International Agency for Research on Cancer; 2010.Google Scholar
  11. 11.
    Hogstedt C, Jansson C, Hugosson M, et al. Cancer incidence in a cohort of Swedish chimney sweeps 1958–2006. Am J Public Health. 2013;103(9):1708–14.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Pukkala E, Martinsen JI, Lynge E, et al. Occupation and cancer – follow-up of 15 million people in five Nordic countries. Acta Oncol. 2009;48(5):646–790.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Polynuclear aromatic compounds. Part 2: Carbon blacks, mineral oils (lubricant base oils and derived products) and some nitroarenes, vol. 33. Lyon: International Agency for Research on Cancer; 1984.Google Scholar
  14. 14.
    Wright JL, Morgan TM, Lin DW. Primary scrotal cancer: disease characteristics and increasing incidence. Urology. 2008;72(5):1139–43. [Epub 2008 Sept 16].PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Mustacchi P. Ramazzini and Rigoni-Stern on parity and breast cancer. Clinical impression and statistical corroboration. Arch Intern Med. 1961;108:639–42.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Colditz GA, Baer HJ, Tamini RM, et al. Breast cancer. In: Schottenfeld D, Fraumeni J, editors. Cancer epidemiology and prevention. 3rd ed. Oxford: Oxford University Press; 2006. p. 995-10121022–39.Google Scholar
  17. 17.
    Dietrich H, Dietrich B. Ludwig Rehn (1849–1930) – pioneering findings on the aetiology of bladder tumours. World J Urol. 2001;19(2):151–3.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Case RAM, Hosker ME, MC Donald DB, et al. Tumours of the urinary bladder in workmen engaged in the manufacture and use of certain dyestuff intermediates in the British chemical industry. Br J Ind Med. 1954;11:75–104.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kogevinas M, Sala M, Boffetta P, et al. Cancer risk in the rubber industry: a review of the recent epidemiological evidence. Occup Environ Med. 1998;55(1):1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans some aromatic amines, organic dyes, and related exposures, vol. 99. Lyon: International Agency for Research on Cancer; 2010. p. 395.Google Scholar
  21. 21.
    MacBeth R. Malignant disease of the paranasal sinuses. J Laryngol Otol. 1965;79:592–612.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Wood dust and formaldehyde, vol. 62. Lyon: International Agency for Research on Cancer; 1995.Google Scholar
  23. 23.
    International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans, a review of human carcinogens: arsenic, metals, fibres, and dusts, vol. 100C. Lyon: International Agency for Research on Cancer; 2012.Google Scholar
  24. 24.
    Lilienfeld DE. The silence: the asbestos industry and early occupational cancer research – a case study. Am J Public Health. 1991;81(6):791–800.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Doll R. Mortality from lung cancer in asbestos workers. Br J Ind Med. 1955;12(2):81–6.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Collegium Ramazzini. Asbestos is still with us: repeat call for a universal ban. J Occup Environ Med. 2010;52(5):469–72.Google Scholar
  27. 27.
    International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Asbestos, vol. 14. Lyon: International Agency for Research on Cancer; 1977.Google Scholar
  28. 28.
    Wagner JC, Sleggs CA, Marchand P. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br J Ind Med. 1960;17:260–71.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hagemeyer O, Otten AE, Kraus AT. Asbestos consumption, asbestos exposure and asbestos-related occupational diseases in Germany. Int Arch Occup Environ Health. 2006;79:613–20.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Plato N, Martinsen JI, Sparén P, et al. Occupation and mesothelioma in Sweden: updated incidence in men and women in the 27 years after the asbestos ban. Epidemiol Health. 2016;38:e2016039.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Creech JL Jr, Johnson MN. Angiosarcoma of liver in the manufacture of polyvinyl chloride. J Occup Med. 1974;16(3):150–1.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Maltoni C, Lefemine G. Carcinogenicity bioassays of vinyl chloride: current results. Ann N Y Acad Sci. 1975;246:195–218.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Verma DK, Purdham JT, Roels HA. Translating evidence about occupational conditions into strategies for prevention. Occup Environ Med. 2002;59(3):205–13.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans, 1,3-butadiene, ethylene oxide and vinyl halides (vinyl fluoride, vinyl chloride and vinyl bromide), vol. 97. Lyon: International Agency for Research on Cancer; 2008.Google Scholar
  35. 35.
    International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans, some anti-thyroid and related substances, nitrofurans and industrial chemicals, vol. 7. Lyon: International Agency for Research on Cancer; 1974.Google Scholar
  36. 36.
    Nicholson WJ, Landrigan PJ. Quantitative assessment of lives lost due to delay in the regulation of occupational exposure to benzene. Environ Health Perspect. 1989;82:185–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol. 2012;6:140–6.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    da Silva J. DNA damage induced by occupational and environmental exposure to miscellaneous chemicals. Mutat Res. 2016;770:170–82.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Pearce N, Blair A, Vineis P, et al. IARC monographs: 40 years of evaluating carcinogenic hazards to humans. Environ Health Perspect. 2015;123(6):507–14.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Birnbaum LS, Thayer KA, Bucher JR, et al. Implementing systematic review at the National Toxicology Program: status and next steps (Editorial). Environ Health Perspect. 2013;121(4):A108.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Morgan RL, Thayer KA, Bero L, et al. GRADE: assessing the quality of evidence in environmental and occupational health. Environ Int. 2016;92–93:611–6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Rudén C, Hansson SO. Registration, Evaluation, and Authorization of Chemicals (REACH) is but the first step-how far will it take us? Six further steps to improve the European chemicals legislation. Environ Health Perspect. 2010;118(1):6–10.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kauppinen T, Toikkanen J, Pedersen D, et al. Occupational exposure to carcinogens in the European Union. Occup Environ Med. 2000;57(1):10–8.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kauppinen T, Toikkanen J, Pukkala E. From cross-tabulations to multipurpose exposure information systems: a new job-exposure matrix. Am J Ind Med. 1998;33(4):409–17.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kauppinen T, Heikkilä P, Plato N, et al. Construction of job-exposure matrices for the Nordic Occupational Cancer Study (NOCCA). Acta Oncol. 2009;48(5):791–800.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans, a review of human carcinogens: chemical agents and related occupations, vol. 100F. Lyon: International Agency for Research on Cancer; 2012.Google Scholar
  47. 47.
    Doll R, Peto J. Asbestos. In: Effects on health of exposure to asbestos. Health and Safety Commission. London: Her Majesty’s Stationery Office; 1985.Google Scholar
  48. 48.
    Olsson AC, Vermeulen R, Brüning T, et al. Exposure response analyses of asbestos and lung cancer pathologies in a pooled analysis of case-control studies in Europe and Canada. Epidemiology. 2017;28(2):288–99.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Meek ME, Boobis AR, Crofton KM, et al. Risk assessment of combined exposure to multiple chemicals: a WHO/IPCS framework. Regul Toxicol Pharmacol. 2011 Apr 2 [Epub ahead of print].Google Scholar
  50. 50.
    Symanski E, Kupper LL, Hertz-Picciotto I, et al. Comprehensive evaluation of long-term trends in occupational exposure: Part 2. Predictive models for declining exposures. Occup Environ Med. 1998;55(5):310–6.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Symanski E, Kupper LL, Rappaport SM. Comprehensive evaluation of long-term trends in occupational exposure: Part 1. Description of the database. Occup Environ Med. 1998;55(5):300–9.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hansson SO. Setting the limit. Occupational health standards and the limits of science. New York: Oxford University Press; 1998.Google Scholar
  53. 53.
    Rappaport SM, Kupper LL. Quantitative exposure assessment. El Cerrito: Rappaport; 2008.Google Scholar
  54. 54.
    Vermeulen R, Silverman DT, Garshick E, et al. Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. Environ Health Perspect. 2014;122(2):172–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Vehmas T, Sauni R, Miller AB, et al. Screening for asbestos-related lung cancer. In: Asbestos, asbestosis, and cancer. Helsinki criteria for diagnosis and attribution. Helsinki, Finland: Finnish Institute of Occupational Health; 2014. p. 11–32.Google Scholar
  56. 56.
    Cherrie JW, Van Tongeren M, Semple S. Exposure to occupational carcinogens in Great Britain. Ann Occup Hyg. 2007;51(8):653–64.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Unit of Occupational Medicine, Institute of Environmental MedicineKarolinska InstitutetStockholmSweden

Personalised recommendations