Advertisement

Malignant Tumors of the Central Nervous System

  • Anssi AuvinenEmail author
  • Diana Withrow
  • Preetha Rajaraman
  • Hannu Haapasalo
  • Peter D. Inskip
Chapter
  • 49 Downloads

Abstract

Malignant tumors of the central nervous system in adults comprise a heterogeneous group of malignancies, the largest subgroups comprising astrocytomas, ependymomas, and oligodendrogliomas. Glioblastomas are the most common tumor type, and they have dismal prognosis. Due to differences in cell type of origin, as well as pathogenesis, it is plausible that their etiology also differs between tumor types.

The etiology of malignant CNS tumors is largely unknown and no occupational risk factors have been definitively identified. High doses of ionizing radiation increase the risk, but in occupational settings the dose levels appear too small to result in discernible excesses. Several studies have assessed possible effect of extremely low frequency and radiofrequency electromagnetic fields, but the results are inconsistent. Increased brain tumor risk has been reported in agricultural workers, but no specific exposure has been linked to them. Pesticides have been analyzed in several studies without showing a clear increase in risk.

Keywords

Glioma Glioblastoma Radiation Electromagnetic fields Pesticides 

References

  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, et al. The WHO classification of tumors of the central nervous system. Lyon: IARC; 2016.Google Scholar
  2. 2.
    Eckel-Passow JE, Lachance DH, Molinaro AM, et al. Glioma groups based on 1p/19q, IDH and TERT promoter mutations in tumors. N Engl J Med. 2015;372:2499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Burger PC, Scheithauer BW. Tumors of the nervous system. Washington, DC: American Registry of Pathology; 2007.Google Scholar
  4. 4.
    Van Meir EG, Hadjipanayis CG, Norden AD, et al. Exciting new advances in neuro-oncology. CA Cancer J Clin. 2010;60:166–93.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Gladson CL, Prayson RA, Liu WM. The pathobiology of glioma tumors. Annu Rev Pathol. 2010;5:33–50.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Huse JT, Holland EC. Targeting brain cancer: advances in molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer. 2010;10:319–31.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Parker M, Mohankumar KM, Punchihewa C, et al. C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature. 2014;506:451–5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 Cancer incidence and mortality worldwide. Lyon: International Agency for Research on Cancer; 2013. http://globocan.iarc.fr. Accessed 16 Aug 2017.Google Scholar
  9. 9.
    Torre LA, Bray F, Siegel RL, et al. Global cancer statistics 2012. CA Cancer J Clin. 2015;65:87–108.PubMedCrossRefGoogle Scholar
  10. 10.
    Soerjomataram I, Lortet-Tieulent J, Parkin DM, et al. Global burden of disease in 2008. Lancet. 2012;380:1840–50.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bray F, Colombet M, Mery L, et al., editors. C15. Cancer incidence in five continents, vol. 11. Lyon: International Agency for Research on Cancer; 2017. ci5.iarc.fr.Google Scholar
  12. 12.
    Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-Oncology. 2015;17(Suppl 4):1–56.CrossRefGoogle Scholar
  13. 13.
    Ho VKY, Reijneveld JC, Enting RH, et al. Changing incidence and improved survival of gliomas. Eur J Cancer. 2014;50:2309–18.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Zada G, Bond AE, Wang YP, et al. Incidence trends in the anatomic location of primary malignant brain tumors in the United States. World Neurosurg. 2012;77:518–24.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kohler BA, Ward E, McCarthy BJ, et al. Annual report to the nation on the status of cancer, 1975-2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst. 2011;103:714–36.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Crocetti E, Trama A, Stiller C, et al. Epidemiology of glial and non-glial brain tumours in Europe. Eur J Cancer. 2012;48:1532–42.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    National Cancer Institute. SEER Cancer Stat Facts: Brain and Other Nervous System Cancer. Bethesda, MD: National Cancer Institute. http://seer.cancer.gov/statfacts/html/brain.html.
  18. 18.
    Lönn S, Klaeboe L, Hall P, et al. Incidence trends of adult primary intracerebral tumors in four Nordic countries. Int J Cancer. 2004;108:450–5.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Arora RS, Alston RD, Eden TO, et al. Are reported increases in incidence of primary CNS tumours real? Eur J Cancer. 2010;46:1607–16.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Dubrow R, Darefsky AS. Demographic variation in incidence of adult glioma by subtype, United States 1992-2007. BMC Cancer. 2011;11:325.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Larjavaara S, Mäntylä R, Salminen T, et al. Incidence of gliomas by anatomic location. Neuro-Oncology. 2007;9:319–25.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Brodbelt A, Greenberg D, Winters T, et al. Glioblastoma in England: 2007-2011. Eur J Cancer. 2015;51:533–42.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Deltour I, Johansen C, Auvinen A, et al. Time trends in brain tumor incidence rates in Denmark, Finland, Norway, and Sweden, 1974-2003. J Natl Cancer Inst. 2009;101:1721–4.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Inskip PD, Hoover RN, Devesa SS. Brain cancer incidence trends in relation to cellular telephone use in the United States. Neuro-Oncology. 2010;12:1147–51.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    De Vocht F, Burstyn I, Cherrie JW. Time trends in brain cancer incidence rates in relation to mobile phone use in England. Bioelectromagnetics. 2011;32:334–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Scoccianti S, Magrini SM, Ricardi U, et al. Patterns of care and survival in a retrospective analysis of 105 patients with glioblastoma multiforme. Neurosurgery. 2010;67:446–58.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Schomas DA, Laack NN, Rao RD, et al. Intracranial low-grade gliomas in adults. Neuro-Oncology. 2009;11:437–45.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ohgaki H, Kleihues P. Population-based studies on incidence survival rates and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64:479–89.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Buckner JC. Factors influencing survival in high-grade gliomas. Semin Oncol. 2003;30(Suppl 19):10–4.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Visser O, Ardanaz E, Botta L, et al. Survival of adults with primary malignant brain tumors in Europe. Eur J Cancer. 2015;51:2231–41.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    van den Bent MJ, Smits M, Kros JM, et al. Diffuse infiltrating oligodendroglioma and astrocytoma. J Clin Oncol. 2017;35:2394–401.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kouwenhoven MC, Gorlia T, Kros JM, et al. Molecular analysis of anaplastic oligodendroglial tumors in a prospective randomized study. Neuro-Oncology. 2009;11:737–46.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Parkinson JF, Afabhi V, Payne CA, et al. The impact of molecular and clinical factors on patient outcome in oligodendroglioma. J Clin Neurosci. 2011;18:320–33.Google Scholar
  34. 34.
    Reni M, Brandes AA, Vavassori V, et al. A multicenter study of prognosis and treatment of adult brain ependymal tumors. Cancer. 2004;10:1221–9.CrossRefGoogle Scholar
  35. 35.
    Armstrong TS, Vera-Bolanos E, Bekele BN, et al. Adult ependymal tumors. Neuro-Oncology. 2010;12:862–70.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hill DA, Inskip PD, Shapiro WR, et al. Cancer in first-degree relatives and risk of glioma in adults. Cancer Epidemiol Biomark Prev. 2003;12:1443–8.Google Scholar
  37. 37.
    Malmer B, Henriksson R, Grönberg H. Familial brain tumours—genetics or environment? A nationwide cohort study of cancer risk in spouses and first-degree relatives of brain tumour patients. Int J Cancer. 2003;106:260–3.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hemminki K, Tretli S, Sundqvist J, et al. Familial risks in nervous-system tumours: a histology-specific analysis from Sweden and Norway. Lancet Oncol. 2009;10:481–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Scheurer ME, Etzel CJ, Liu M, et al. Familial aggregation of glioma: a pooled analysis. Am J Epidemiol. 2010;172:1099–107.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    McCarthy BJ, Rankin KM, Aldape K, et al. Risk factors for oligodendroglial tumors. Neuro-Oncology. 2011;13:242–50.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Rajaraman P, Melin BS, Wang Z, et al. Genome-wide association study of glioma and meta-analysis. Hum Genet. 2012;131:1877–88.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kinnersley B, Laboussiere M, Holroyd A, et al. Genome-wide association study identifies multiple susceptibility loci for glioma. Nat Commun. 2015a;6:8559.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Melin BS, Barnholtz-Sloan JS, Wrensch MR, et al. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet. 2017;49:789–94.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kinnersley B, Mitchell JS, Gousias K, et al. Quantifying the heritability of glioma using genome-wide complex trait analysis. Sci Rep. 2015b;5:17267.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Brenner AV, Linet MS, Fine HA, et al. History of allergies and autoimmune diseases and risk of brain tumors in adults. Int J Cancer. 2002;99:252–9.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Wiemels JL, Wiecke JK, Patoka J, et al. Reduced immunoglobulin E and allergy among adults with glioma compared with controls. Cancer Res. 2004;64:8468–73.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Wigertz A, Lönn S, Schwartzbaum J, et al. Allergic conditions and brain tumor risk. Am J Epidemiol. 2007;166:141–50.CrossRefGoogle Scholar
  48. 48.
    Scheurer ME, El-Zein R, Thompson PA, et al. Long-term anti-inflammatory and antihistamine medication use and risk of adult glioma. Cancer Epidemiol Biomark Prev. 2008;17:1277–81.CrossRefGoogle Scholar
  49. 49.
    Lachance DH, Yang P, Johnson DR, et al. Associations of high-grade glioma with glioma risk alleles and histories of allergy and smoking. Am J Epidemiol. 2011;174:574–81.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Turner M, Krewski D, Armstrong BK, et al. Allergy and brain tumors in the INTERPHONE study. Cancer Causes Control. 2013;24:949–60.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Safaeian M, Rajaraman P, Hartge P, et al. Joint effects between five identified risk variants, allergy and autoimmune conditions on glioma risk. Cancer Causes Control. 2013;24:1885–91.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Cahoon EK, Inskip PD, Gridley G, Brenner AV. Immune-related conditions and subsequent brain cancer in a cohort 4.5 million U.S. male veterals. Br J Cancer. 2014;110:1825–33.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Krishnamachari B, Il’yasova D, Scheurer ME, et al. A pooled multisite analysis of the effects of atopic medical condition in glioma risk in different ethnic groups. Ann Epidemiol. 2015;25:270–4.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Linos E, Raine T, Alonso A, et al. Atopy and risk of gliomas. J Natl Cancer Inst. 2007;99:1544–50.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Chen C, Xu T, Chen J, et al. Allergy and risk of glioma. Eur J Neurol. 2011;18:387–95.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Schlehofer B, Blettner M, Preston-Martin S, et al. Role of medical history in brain tumour development. Int J Cancer. 1999;82:155–60.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Scheurer ME, Amirian ES, Davlin SL, et al. Effects of antihistamine use and anti-inflammatory medication use on risks of specific glioma histologies. Int J Cancer. 2011;129:2290–6.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wiemels JL, Wilson D, Patil C, et al. IgE, allergy, and risk of glioma. Int J Cancer. 2009;125:680–7.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Calboli FC, Cox DG, Buring JE, et al. Prediagnostic plasma IgE leves and risk of adult glioma in four prospective cohort studies. J Natl Cancer Inst. 2011;103:1588–95.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Schlehofer B, Sigmund B, Linseisen J, et al. Primary brain tumors and specific immunoglobulin E: a case-control study nested in the EPIC cohort. Allergy. 2011;16:1434–41.CrossRefGoogle Scholar
  61. 61.
    Schwartzbaum J, Seweryn M, Holloman C, et al. Association between prediagnostic allergy-related serum cytokines and glioma. PLoS One. 2015;10:e0137503.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Amirian ES, Marquez-Do D, Bondy ML, et al. Antihistamine use and immunoglobulin E levels in glioma risk and prognosis. Cancer Epidemiol. 2013;37:908–12.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Wrensch M, Lee M, Miike R, et al. Familial and personal medical history of cancer and nervous system conditions among adults with glioma and controls. Am J Epidemiol. 1997;145:581–93.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Wrensch M, Weinberg A, Wiencke J, et al. Prevalence of antibodies to four herpes viruses among adults with glioma and controls. Am J Epidemiol. 2001;154:161–5.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Wrensch M, Weinberg A, Wiencke J, et al. History of chickenpox and shingles and prevalence of antibodies to varicella zoster virus and three other herpes viruses among adults with glioma and controls. Am J Epidemiol. 2005;161:929–38.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Sjöström S, Hjalmars U, Juto P, et al. Human immunoglobulin G levels and associated glioma risk. Cancer Causes Control. 2011;22:1259–66.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Amirian ES, Scheurer ME, Zhou R, et al. History of chickenpox in glioma risk. Cancer Med. 2016;5:1352–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Huncharek M, Kupelnick B, Wheeler L. Dietary cured meat and the risk of adult glioma: a meta-analysis of nine observational studies. J Environ Pathol Toxicol Oncol. 2003;22:129–37.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Efird J, Friedman GD, Sidney S, et al. The risk for malignant primary adult-onset glioma in a large, multiethnic, managed-care cohort: cigarette smoking and other lifestyle behaviors. J Neuro-Oncol. 2004;68:57–69.CrossRefGoogle Scholar
  70. 70.
    Holick CN, Giovannucci E, Rosner B, et al. Prospective study of cigarette smoking and adult glioma. Neuro-Oncology. 2007;9:326–34.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Benson VS, Pirie K, Green J, et al. Lifestyle factors and primary glioma and meningioma tumours in the Million Women Study cohort. Br J Cancer. 2008;99:185–90.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Mandelzweig L, Novikov I, Sadetzki S. Smoking and risk of glioma. Cancer Causes Control. 2009;20:1927–38.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Holick CN, Smith SG, Giovannucci E, Michaud DS. Coffee, tea, caffeine intake, and risk of adult glioma in three prospective cohort studies. Cancer Epidemiol Biomark Prev. 2010;19:39–47.CrossRefGoogle Scholar
  74. 74.
    Michaud DS, Gallo V, Schlehofer B, et al. Coffee and tea intake and risk of brain tumors in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study. Am J Clin Nutr. 2010b;92:1145–50.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Johansen C, Schüz J, Andreasen AS, et al. Study design may influence results. Br J Cancer. 2017;116:841–8.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Blair A, Grauman DJ, Lubin JH, Fraumeni JF Jr. Lung cancer and other causes of death among licensed pesticide applicators. J Natl Cancer Inst. 1983;71:31–7.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Acquavella J, lsen G, Cole P, et al. Cancer among farmers: a meta-analysis. Ann Epidemiol. 1998;8:64–74.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Khuder SA, Mutgi AB, Schaub EA. Meta-analyses of brain cancer and farming. Am J Ind Med. 1998;34:252–60.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Alavanja MCR, Sandler DP, Lynch CF, et al. Cancer incidence in the Agricultural Health Study. Scand J Work Environ Health. 2005;21(Suppl 1):39–45.Google Scholar
  80. 80.
    Waggoner JK, Kullman GJ, Henneberger PK, et al. Mortality in the Agricultural Health Study, 1993-2007. Am J Epidemiol. 2010;173:71–83.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ruder AM, Waters MA, Carreón T, et al. The Upper Midwest Health Study: industry and occupation of glioma cases and controls. Am J Ind Med. 2012;55:747–55.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ruder AM, Waters MA, Butler MA, et al. Gliomas and farm pesticide exposure in men. Arch Environ Health. 2004;59:650–7.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Lee WJ, Colt JS, Heineman EF, et al. Agricultural pesticide use and risk of glioma in Nebraska, United States. Occup Environ Med. 2005;62:786–92.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Samanic CM, de Roos AJ, Stewart PA, et al. Occupational exposure to pesticides and risk of adult brain tumors. Am J Epidemiol. 2008;167:676–85.CrossRefGoogle Scholar
  85. 85.
    Yiin JH, Ruder AM, Stewart PA, et al. The Upper Midwest health study: a case-control study of pesticide applicators and risk of glioma. Environ Health. 2012;11:39.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Reif J, Pierce N, Fraser J. Cancer risks in New Zealand farmers. Int J Epidemiol. 1989;18:768–74.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Morrison HI, Semenciw RM, Morison D, et al. Brain cancer and farming in western Canada. Neuroepidemiology. 1992;11:267–76.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Ménégoz F, Little L, Colonna M, et al. Contacts with animals and humans as risk factors for adult brain tumors. Eur J Cancer. 2002;38:696–704.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ruder AM, Carreon T, Butler MA, et al. Exposure to farm crops, livestock, and farm tasks and risk of glioma: the Upper Midwest Health Study. Am J Epidemiol. 2009;169:1479–91.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    McLaughlin JK, Malmer H, Blot WJ, et al. Occupational risks for intracranial gliomas in Sweden. J Natl Cancer Inst. 1987;78:253–7.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Andersson E, Nilsson R, Toren K. Gliomas among men employed in the Swedish pulp and paper industry. Scand J Work Environ Health. 2002;28:333–40.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Navas-Acién A, Pollán M, Gustavsson P, Plato N. Occupation, exposure to chemicals and risk of gliomas and meningiomas in Sweden. Am J Ind Med. 2002;42:214–27.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Wong O, Raabe GK. A critical review of cancer epidemiology in the petroleum industry. Regul Toxicol Pharmacol. 2000;32:78–98.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    McLean D, Pierce N, Langseth H, et al. Cancer mortality in workers exposed to organochlorine compounds in the pulp and paper industry. Environ Health Perspect. 2006;114:1007–12.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Heineman EF, Gao YT, Dosemeci M, et al. Occupational risk factors for brain tumors among women in Shanghai, China. J Occup Environ Med. 1995;37:288–93.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Rix BA, Lynge E. Cancer incidence in Danish health care workers. Scand J Soc Med. 1996;24:114–20.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Carpenter LM, Swerdlow AJ, Fear NT. Mortality of doctors in different specialties. Occup Environ Med. 1997;54:388–95.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Aronson KJ, Howe GR, Carpenter M, et al. Surveillance of potential associations between occupations and causes of death in Canada, 1965-91. Occup Environ Med. 1999;56:265–9.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Carozza SE, Wrensch M, Miike R, et al. Occupation and adult gliomas. Am J Epidemiol. 2000;152:838–46.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    de Roos AJ, Stewart PA, Linet MS, et al. Occupation and the risk of adult glioma in the United States. Cancer Causes Control. 2003;14:139–50.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Krishnan G, Felini M, Carozza SE, et al. Occupation and adult gliomas in San Francisco bay area. J Occup Environ Med. 2003;45:639–47.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Negri E, Piolatto G, Pira E, et al. Cancer mortality in a Northern Italian cohort of rubber workers. Br J Ind Med. 1989;46:624–8.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Preston-Martin S, Mack W, Henderson BE. Risk factors for gliomas and meningiomas in males in Los Angeles County. Cancer Res. 1989;49:6137–43.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Zheng T, Cantor KP, Zhang Y, et al. Occupational risk factors for glioma. J Occup Environ Health. 2001;43:317–24.Google Scholar
  105. 105.
    IARC Monographs on the evaluation of carcinogenic risks to humans, Vol 100F. Chemical agents and related occupations (Occupational exposures in the rubber-manufacturing industry). Lyon: International Agency for Research on Cancer; 2012.Google Scholar
  106. 106.
    Kogevinas M, Sala M, Boffetta P, et al. Cancer risk in the rubber industry. Occup Environ Med. 1998;55:1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Pan SY, Ugant AM, Mao Y. Occupational risk factors for brain cancer in Canada. J Occup Environ Med. 2005;47:704–17.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Parent ME, Turner MC, Lavoué J, et al. Lifetime occupational exposure to metals and welding fumes, and risk of glioma. Environ Health. 2017;16:90.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hall, Giaccia 2006 [from Preetha].Google Scholar
  110. 110.
    IARC Monographs on the evaluation of carcinogenic risks to humans, vol 75. Ionizing radiation, part 1: X- and gamma (γ)-radiation, and neutrons. Lyon: International Agency for Research on Cancer; 2000.Google Scholar
  111. 111.
    Cardis E, Vrijheid M, Blettner M, et al. The 15-Country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res. 2007;167:396–416.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Muirhead CR, O’Hagan JA, Haylock RGE, et al. Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers. Br J Cancer. 2009;100:206–12.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Richardson DB, Cardis E, Daniels RD, et al. Site-specific cancer mortality after exposure to ionising radiation: a cohort of workers (INWORKS). Epidemiology. 2018;29:31–40.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Rajaraman P, Doody MM, Yu CL, et al. Cancer risks in U.S. radiologic technologists working with fluoroscopically guided interventional procedures, 1994-2008. Am J Roentgenol. 2016;206:1101–8.CrossRefGoogle Scholar
  115. 115.
    Kitahara CM, Linet MS, Balter S, et al. Occupational radiation exposure and deaths from malignant intracranial neoplasms of the brain and CNS in U.S. Radiologic technologists. Am J Roentgenol. 2017;208:1278–84.CrossRefGoogle Scholar
  116. 116.
    Hammer G, Auvinen A, de Stavola BL, et al. Mortality from cancer and other causes in commercial airline crews. Occup Environ Med. 2014;71:312–22.CrossRefGoogle Scholar
  117. 117.
    Sokolnikov M, Preston D, Gilbert E, et al. Radiation effects on mortality from slid cancer other than lung, liver and bone in the Mayak worker cohort 1948-2008. PLoS One. 2015;10:e01177842015.CrossRefGoogle Scholar
  118. 118.
    Berrington de Gonzalez A, Ntowe E, Kitahara E, et al. Long-term mortality in 43,763 US radiologists compared with 64,990 psychiatrists. Radiology. 2016;281:847–57.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Kitahara CM, Linet MS, Balter S, et al. Occupational radiation exposure and deaths from malignant intracranial neoplasms of the brain and CNS in US radiologic technologsts 1983-2012. Am J Roentgenol. 2017;208:1278–84.CrossRefGoogle Scholar
  120. 120.
    Linet MS, Kitahara CM, Ntowe E, et al. Mortality in US physicians likely to perform fluoroscopy-guided interventional procedures compared with psychiatrists 1979-2008. Radiology. 2017;284:482–94.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Pukkala E, Aspholm R, Auvinen A, et al. Incidence of cancer among Nordic airline pilots over five decades: occupational cohort study. Br Med J. 2003;325:567–72.CrossRefGoogle Scholar
  122. 122.
    Rahu K, Hakulinen T, Smailyte G, et al. Site-specifc cancer risks in the Baltic cohort of Chernobyl clean-up workers. Eur J Cancer. 2013;49:2926–33.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Rajaraman P, Hauptmann M, Boufller S, Wojcik A. Human individual radiation sensitivity and prospects for prediction. Ann ICRP. 2018;47:126–41.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    IARC Monographs on the evaluation of carcinogenic risks to humans, vol 102. Non-ionizing radiation, Part 2. Radiofrequency electromagnetic fields. Lyon: International Agency for Research on Cancer; 2012.Google Scholar
  125. 125.
    Hardell L, Carlberg M, Söderqvist F, Mild KH. Case-control study of the association between malignant brain tumors diagnosed between 2007 and 2009 and mobile and cordless phone use. Int J Oncol. 2013;43:1833–45.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Coureau G, Bouvier G, Lebailly P, et al. Mobile phone use and brain tumors in the CERENAT case-control study. Occup Environ Med. 2014;71:514–22.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Frei P, Poulsen AH, Johansen C, et al. Use of mobile phone sand risk of brain tumours: update of Danish cohort study. BMJ. 2011;343:d63872011.Google Scholar
  128. 128.
    Benson VS, Pirie K, Schüz J, et al. Mobile phone use and risk of brain neoplasms and other cancers. Int J Epidemiol. 2013;42:792–802.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Groves FD, Page WF, Gridley G, et al. Cancer in Korean War navy technicians. Am J Epidemiol. 2002;55:810–8.CrossRefGoogle Scholar
  130. 130.
    Morgan RW, Kelsh MA, Zhao K, et al. Radiofrequency exposure and mortality from cancer of the brain and lymphatic/hematopoietic systems. Epidemiology. 2000;11:118–27.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Berg G, Spallek J, Schüz J, et al. Occupational exposure to radio frequency/microwave radiation and the risk of brain tumors: Interphone study group, Germany. Am J Epidemiol. 2006;164:538–48.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Grayson JK. Radiation exposure, socioeconomic status, and brain tumor risk in the US Air Force: a nested case-control study. Am J Epidemiol. 1996;143:480–6.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Karipidis KK, Benke G, Sim MR, et al. Occupational exposure to low frequency magnetic fields and the risk of low grade and high grade glioma. Cancer Causes Control. 2007;18:305–13.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Baldi I, Coureau G, Jaffré A, et al. Occupational and residential exposure to electromagnetic fields and risk of brain tumors in adults. Int J Cancer. 2011;129:1477–84.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Lin RS, Dischinger PC, Conde J, Farrell KP. Occupational exposure to electromagnetic fields and the occurrence on brain tumors. J Occup Med. 1985;27:413–9.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Thomas TL, Stolley P, Stemhagen A, et al. Brain tumor mortality risk among men with electrical and electronics jobs: a case-control study. J Natl Cancer Inst. 1987;79:233–8.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Speers MA, Dobbins JG, Miller VS. Occupational exposures and brain cancer mortality. Am J Ind Med. 1988;13:629–38.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Loomis DP, Savitz DA. Mortality from brain cancer and leukaemia among electrical workers. Br J Ind Med. 1990;47:633–8.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Röösli M, Lörtscher M, Egger M, et al. Leukaemia, brain tumours and exposure to extremely low frequency magnetic fields: a cohort study of Swiss railway employees. Occup Environ Med. 2007;64:553–9.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Karipidis KK, Benke G, Sim MR, et al. Occupational exposure to ionising and non-ionising radiation and risk of glioma. Occup Med. 2007;57:518–24.CrossRefGoogle Scholar
  141. 141.
    Kheifets L, Monroe V, et al. Occupational electromagnetic fields and leukemia and brain cancer: an update to two meta-analyses. J Occup Environ Med. 2008;50:677–88.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Koeman T, van den Brandt PA, Slottje P, et al. Occupational extremely low frequency magnetic field exposure and selected cancer outcomes in a prospective Dutch cohort. Cancer Causes Control. 2014;25:203–14.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Håkansson N, Floderus B, Gustavsson P, et al. Cancer incidence and magnetic field exposure in industries using resistance welding in Sweden. Occup Environ Med. 2002;59:481–6.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Coble JB, Dosemeci M, Stewart PA, et al. Occupational exposure to magnetic fields and the risk of brain tumors. Neuro-Oncology. 2009;11:242–9.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Turner MC, Benke G, Bowman JD, et al. Occupational exposure to extremely low frequency magnetic field and brain tumor risks in the INTEROCC study. Cancer Epidemiol Biomark Prev. 2014;23:1863–72.CrossRefGoogle Scholar
  146. 146.
    Navas-Acién PM, Gustavsson P, et al. Interactive effect of chemical substances and occupational electromagnetic field exposure on the risk of gliomas and meningiomas in Swedish men. Cancer Epidemiol Biomark Prev. 2002;11:1678–83.Google Scholar
  147. 147.
    Savitz DA, Loomis DP. Magnetic field exposure in relation to leukemia and brain cancer mortality among electric utility workers. Am J Epidemiol. 1995;141:123–34.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Thériault G, Goldberg M, Miller AB, et al. Cancer risks associated with occupational exposure to magnetic fields among electric utility workers in Ontario and Quebec, Canada, and France: 1970-1989. Am J Epidemiol. 1994;139:550–72.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Rodvall Y, Ahlbom A, Stenlund C, et al. Occupational exposure to magnetic fields and brain tumours in central Sweden. Eur J Epidemiol. 1998;14:563–9.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Villeneuve PJ, Agnew DA, Johnson KC, et al. Brain cancer and occupational exposure to magnetic fields among men: Results from a Canadian population-based case-control study. Int J Epidemiol. 2002;31:210–7.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Kogevinas M, Becher H, Benn T, et al. Cancer mortality in workers exposed to phenoxy herbicides, chlorophenols and dioxins. Am J Epidemiol. 1997;145:1061–75.CrossRefGoogle Scholar
  152. 152.
    Carreón T, Butler MA, Ruder AM, et al. Gliomas and farm pesticide exposure in women. Environ Health Persp. 2005;113:546–51.CrossRefGoogle Scholar
  153. 153.
    Ruder AM, Waters MA, Carreón T, et al. The Upper Midwest Health Study: A case-control study of primary intracranial gliomas in farm and rural residents. J Agric Saf Health. 2006;12:255–74.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Ruder AM, Carreon T, Butler MA, et al. Exposure to farm crops, livestock, and farm tasks and risk of glioma: the Upper Midwest Health Study. Am J Epid. 2009;169:1479–91.CrossRefGoogle Scholar
  155. 155.
    Heineman EF, Cocco P, Gómez MR, et al. Occupational exposure to chlorinated aliphatic hydrocarbons and risk of astrocytic brain cancer. Am J Ind Med. 1994;26:155–69.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Cocco P, Heineman EF, Dosemeci M. Occupational risk factors for cancer of the central nervous system among US women. Am J Ind Med. 1999;36:70–4.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Wesseling C, Pukkala E, Neuvonen K, et al. Cancer of the brain and nervous system and occupational exposures in Finnish women. J Occup Environ Med. 2002;44:663–8.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Neta G, Stewart PA, Rajaraman P, et al. Occupational exposure to chlorinated solvents and risks of glioma and meningioma in adults. Occup Environ Med. 2012;69:793–801.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Ruder AM, Yiin JH, Waters MA, et al. The Upper Midwest Health Study: gliomas and occupational exposure to chlorinated solvents. Occup Environ Med. 2013;70:73–80.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Benke G, Turner MC, Fleming S, et al. Occupational solvent exposure and risk of glioma in the INTEROCC study. Br J Cancer. 2017;117:1246–54.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Boffetta P, Matisane L, Mundt KA, Dell LD. Meta-analysis of studies of occupational exposure to vinyl chloride in relation to cancer mortality. Scand J Work Environ Health. 2003;29:220–9.CrossRefGoogle Scholar
  162. 162.
    Mundt KA, Dell LD, Austin RP, et al. A historical cohort study of 10,109 men in the American vinyl chloride industry. Occup Environ Med. 2000;57:774–81.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Ward E, Boffetta P, Andersen A, et al. Update of the follow-up for mortality and incidence of cancer among European workers employed in the vinyl chloride industry. Epidemiology. 2001;12:710–8.CrossRefGoogle Scholar
  164. 164.
    Cocco P, Dosemeci M, Heineman EF. Brain cancer and occupational exposure to lead. J Occup Environ Med. 1998;40:937–42.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Rajaraman P, Stewart PA, Samet JM, et al. Lead, genetic susceptibility and risk of adult brain tumors. Cancer Epidemiol Biomark Prev. 2006;15:2514–20.CrossRefGoogle Scholar
  166. 166.
    Van Wijngaarden E, Dosemeci M. Brain cancer mortality and potential occupational exposure to lead. Int J Cancer. 2006;119:1136–44.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Bhatti P, Stewart PA, Hutchinson A, et al. Lead exposure, polymorphisms in genes related to oxidative stress, and risk of adult brain tumors. Cancer Epidemiol Biomark Prev. 2009;18:1841–8.CrossRefGoogle Scholar
  168. 168.
    Anttila A, Hiekkilä P, Nykyri E, et al. Risk of nervous system cancer among workers exposed to lead. J Occup Environ Med. 1996;38:131–6.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Blair A, Stewart PA, Zaebst DD, et al. Mortality in industrial workers exposed to acrylonitrile. Scand J Work Environ Health. 1998;24(Suppl 2):25–41.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Collins JJ, Strather DE. CNS tumors and exposure to acrylonitrile. Neuro-Oncology. 1999;1:221–30.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Cole P, Mandel JS, Collins JJ. Acrylonitrile and cancer. Regul Toxicol Pharmacol. 2008;52:342–51.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Hauptmann M, Stewart PA, Lubin JH, et al. Mortality from lymphohematopoietic malignancies and brain cancer among embalmers exposed to formaldehyde. J Natl Cancer Inst. 2009;101:1696–708.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Bosetti C, McLaughlin JK, Tarone RE, et al. Formaldehyde and cancer risk. Ann Oncol. 2008;19:29–43.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anssi Auvinen
    • 1
    • 2
    Email author
  • Diana Withrow
    • 3
  • Preetha Rajaraman
    • 3
  • Hannu Haapasalo
    • 4
    • 5
  • Peter D. Inskip
    • 6
  1. 1.Faculty of Social SciencesTampere UniversityTampereFinland
  2. 2.STUK—Radiation and Nuclear Safety AuthorityEnvironmental SurveillanceHelsinkiFinland
  3. 3.Division of Cancer Epidemiology and Genetics, Maryland and Department of Health and Human ServicesU.S. National Cancer Institute, Office of Global AffairsBethesdaUSA
  4. 4.Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
  5. 5.Fimlab Laboratories, Department of PathologyTampereFinland
  6. 6.Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleUSA

Personalised recommendations