Breast Cancer

  • France Labrèche
  • Mark S. Goldberg
  • Dana Hashim
  • Elisabete WeiderpassEmail author


Breast cancer is the most common neoplasm in women, and it is a rare cancer in men. A handful of occupational exposures, including ethylene oxide and shift work that involve circadian disruption, have been linked, with limited human evidence, to an increased risk of breast cancer in women. Evidence is still being gathered regarding other occupational and environmental exposures, such as several hydrocarbons and certain components of air pollution, that are suspected to play an etiologic role. Therapeutic exposure to several medications and to X-radiation and γ-radiation has been linked with sufficient evidence to female breast cancer; however, the weight of occupational evidence for these same carcinogens is still deemed limited or insufficient. Between 2 and 5% of the breast cancers diagnosed now are estimated to be attributable to occupational exposures; as the most common cancer among women, breast cancer thus represents an important burden on our societies. Although no occupational exposures have yet been linked specifically to male breast cancer, similarities between male and female breast cancers suggest potential common causal factors. As only about 30% of new cases of breast cancer can be explained by known risk factors, continued research on the relationship between environmental and occupational exposures and breast cancer is warranted.


Breast cancer Occupational exposure Risk factors Shift work Work schedule tolerance Ethylene oxide 



Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/World Health Organization. Dr. Hashim was at IARC at the time of writing this chapter.


  1. 1.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.CrossRefGoogle Scholar
  2. 2.
    Jemal A, Ward E, Thun MJ. Recent trends in breast cancer incidence rates by age and tumor characteristics among U.S. women. Breast Cancer Res. 2007;9:R28.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ravdin PM, Cronin KA, Howlader N, et al. The decrease in breast-cancer incidence in 2003 in the United States. N Engl J Med. 2007;356:1670–4.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Althuis MD, Dozier JM, Anderson WF, Devesa SS, Brinton LA. Global trends in breast cancer incidence and mortality 1973–1997. Int J Epidemiol. 2005;34:405–12.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kelsey JL, Bernstein L. Epidemiology and prevention of breast cancer. Annu Rev Public Health. 1996;17:47–67.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Harris JR, Lippman ME, Veronesi U, Willett W. Breast cancer (1). N Engl J Med. 1992;327:319–28.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Byrne C, Harris A. Cancer rates and risks. 4th ed. Bethesda: US Department of Health and Human Services, National Institutes of Health; 1996.Google Scholar
  8. 8.
    Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, Mulvihill JJ. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81:1879–86.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rockhill B, Weinberg CR, Newman B. Population attributable fraction estimation for established breast cancer risk factors: considering the issues of high prevalence and unmodifiability. Am J Epidemiol. 1998;147:826–33.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Madigan MP, Ziegler RG, Benichou J, Byrne C, Hoover RN. Proportion of breast cancer cases in the United States explained by well-established risk factors. J Natl Cancer Inst. 1995;87:1681–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bruzzi P, Green SB, Byar DP, Brinton LA, Schairer C. Estimating the population attributable risk for multiple risk factors using case-control data. Am J Epidemiol. 1985;122:904–14.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet. 2002;360:187–95.CrossRefGoogle Scholar
  13. 13.
    IARC. Monographs on the evaluation on carcinogenic risks to humans. A review of human carcinogens. Part A: pharmaceuticals, vol. 100. Lyon: International Agency for Research on Cancer; 2011.Google Scholar
  14. 14.
    World Cancer Research Fund, American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC: AICR; 2007.Google Scholar
  15. 15.
    Ewertz M. Hormone therapy in the menopause and breast cancer risk—a review. Maturitas. 1996;23:241–6.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    IARC. IARC handbooks of cancer prevention, weight control and physical activity, vol. 6. Lyon: International Agency for Research on Cancer; 2002.Google Scholar
  17. 17.
    IARC. IARC handbooks of cancer prevention, fruit and vegetables, vol. 8. Lyon: International Agency for Research on Cancer; 2003.Google Scholar
  18. 18.
    IARC. Monographs on the evaluation on carcinogenic risks to humans. A review of human carcinogens. Part D: radiation, vol. 100. Lyon: International Agency for Research on Cancer; 2012.Google Scholar
  19. 19.
    Hankinson S, Hunter D. Breast cancer. In: Hunter H, Trichopoulos D, Adami HO, editors. Textbook of cancer epidemiology. Oxford: Oxford University Press; 2002.Google Scholar
  20. 20.
    Ekenga CC, Parks CG, Sandler DP. A prospective study of occupational physical activity and breast cancer risk. Cancer Causes Control. 2015;26:1779–89.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Johnsson A, Broberg P, Johnsson A, Tornberg AB, Olsson H. Occupational sedentariness and breast cancer risk. Acta Oncol. 2017;56:75–80.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    IARC. Monographs on the evaluation on carcinogenic risks to humans. A review of human carcinogens. Part E: personal habits and indoor combustions, vol. 100. Lyon: International Agency for Research on Cancer; 2012.Google Scholar
  23. 23.
    Boice JD Jr, Monson RR. Breast cancer in women after repeated fluoroscopic examinations of the chest. J Natl Cancer Inst. 1977;59:823–32.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ahn YS, Park RM, Koh DH. Cancer admission and mortality in workers exposed to ionizing radiation in Korea. J Occup Environ Med. 2008;50:791–803.CrossRefGoogle Scholar
  25. 25.
    Antoniou AC, Easton DF. Models of genetic susceptibility to breast cancer. Oncogene. 2006;25:5898–905.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86:1600–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Slattery ML, Kerber RA. A comprehensive evaluation of family history and breast cancer risk. The Utah population database. JAMA. 1993;270:1563–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mavaddat N, Antoniou AC, Easton DF, Garcia-Closas M. Genetic susceptibility to breast cancer. Mol Oncol. 2010;4:174–91.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Amundadottir LT, Thorvaldsson S, Gudbjartsson DF, et al. Cancer as a complex phenotype: pattern of cancer distribution within and beyond the nuclear family. PLoS Med. 2004;1:e65.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kerber RA, O’Brien E. A cohort study of cancer risk in relation to family histories of cancer in the Utah population database. Cancer. 2005;103:1906–15.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet. 2008;40:17–22.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA. Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet. 2002;31:33–6.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rahman N, Seal S, Thompson D, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet. 2007;39:165–7.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Easton DF, Pooley KA, Dunning AM, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447:1087–93.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hunter DJ, Kraft P, Jacobs KB, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007;39:870–4.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ahmed S, Thomas G, Ghoussaini M, et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet. 2009;41:585–90.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Stacey SN, Manolescu A, Sulem P, et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet. 2008;40:703–6.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Thomas G, Jacobs KB, Kraft P, et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet. 2009;41:579–84.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Turnbull C, Ahmed S, Morrison J, et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet. 2010;42:504–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zheng W, Long J, Gao YT, et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet. 2009;41:324–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cox A, Dunning AM, Garcia-Closas M, et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet. 2007;39:352–8.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Milne RL, Benitez J, Nevanlinna H, et al. Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. J Natl Cancer Inst. 2009;101:1012–8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Antoniou AC, Wang X, Fredericksen ZS, et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet. 2010;42:885–92.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wacholder S, Hartge P, Prentice R, et al. Performance of common genetic variants in breast-cancer risk models. N Engl J Med. 2010;362:986–93.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    IARC. Agents classified by the IARC monographs, vol. 1–120. Lyon: International Agency for Research on Cancer. Last update 27 Oct 2017.
  46. 46.
    IARC. Website of the IARC monographs on the evaluation of carcinogenic risks to humans. Accessed 27 Oct 2017.
  47. 47.
    IARC. Monographs on the evaluation on carcinogenic risks to humans. A review of human carcinogens. Polychlorinated and polybrominated biphenyls, vol. 107. Lyon: International Agency for Research on Cancer; 2015.Google Scholar
  48. 48.
    IARC. Monographs on the evaluation on carcinogenic risks to humans. A review of human carcinogens. Part F: chemical agents and related occupations, vol. 100. Lyon: International Agency for Research on Cancer; 2012.Google Scholar
  49. 49.
    IARC. Monographs on the evaluation on carcinogenic risks to humans. Painting, firefighting and shiftwork, vol. 98. Lyon: International Agency for Research on Cancer; 2010.Google Scholar
  50. 50.
    Hagmar L, Mikoczy Z, Welinder H. Cancer incidence in Swedish sterilant workers exposed to ethylene oxide. Occup Environ Med. 1995;52:154–6.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Norman SA, Berlin JA, Soper KA, Middendorf BF, Stolley PD. Cancer incidence in a group of workers potentially exposed to ethylene oxide. Int J Epidemiol. 1995;24:276–84.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Steenland K, Whelan E, Deddens J, Stayner L, Ward E. Ethylene oxide and breast cancer incidence in a cohort study of 7576 women (United States). Cancer Causes Control. 2003;14:531–9.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Coggon D, Harris EC, Poole J, Palmer KT. Mortality of workers exposed to ethylene oxide: extended follow up of a British cohort. Occup Environ Med. 2004;61:358–62.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Mikoczy Z, Tinnerberg H, Bjork J, Albin M. Cancer incidence and mortality in Swedish sterilant workers exposed to ethylene oxide: updated cohort study findings 1972-2006. Int J Environ Res Public Health. 2011;8:2009–19.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA. Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst. 2001;93:1563–8.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Schernhammer ES, Kroenke CH, Laden F, Hankinson SE. Night work and risk of breast cancer. Epidemiology. 2006;17:108–11.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Schwartzbaum J, Ahlbom A, Feychting M. Cohort study of cancer risk among male and female shift workers. Scand J Work Environ Health. 2007;33:336–43.CrossRefGoogle Scholar
  58. 58.
    Pronk A, Ji BT, Shu XO, et al. Night-shift work and breast cancer risk in a cohort of Chinese women. Am J Epidemiol. 2010;171:953–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Tynes T, Hannevik M, Andersen A, Vistnes AI, Haldorsen T. Incidence of breast cancer in Norwegian female radio and telegraph operators. Cancer Causes Control. 1996;7:197–204.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hansen J. Increased breast cancer risk among women who work predominantly at night. Epidemiology. 2001;12:74–7.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lie JA, Roessink J, Kjaerheim K. Breast cancer and night work among Norwegian nurses. Cancer Causes Control. 2006;17:39–44.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Davis S, Mirick DK, Stevens RG. Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst. 2001;93:1557–62.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    O’Leary ES, Schoenfeld ER, Stevens RG, et al. Shift work, light at night, and breast cancer on Long Island, New York. Am J Epidemiol. 2006;164:358–66.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Pesch B, Harth V, Rabstein S, et al. Night work and breast cancer—results from the German GENICA study. Scand J Work Environ Health. 2010;36:134–41.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    NTP. “Ethylene oxide”. Report on carcinogens. 14th ed. Research Triangle Park: US Department of Health and Human Services, Public Health Service, National Toxicology Program; 2016. Last update 3 Nov 2016.Google Scholar
  66. 66.
    Occupational Safety and Health Commission. Regulatory review of the occupational safety and health administration’s ethylene oxide standard. Washington, DC: OSHA; 2005.Google Scholar
  67. 67.
    Kauppinen T, Toikkanen J, Pedersen D, et al. Occupational exposure to carcinogens in the European union. Occup Environ Med. 2000;57:10–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Grosswald B. The effects of shiftwork on family satisfaction. Families in society. J Contemp Soc Serv. 2004;85:413–23.Google Scholar
  69. 69.
    Costa G, Haus E, Stevens R. Shift work and cancer—considerations on rationale, mechanisms, and epidemiology. Scand J Work Environ Health. 2010;36:163–79.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Megdal SP, Kroenke CH, Laden F, Pukkala E, Schernhammer ES. Night work and breast cancer risk: a systematic review and meta-analysis. Eur J Cancer. 2005;41:2023–32.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Brainard GC, Sliney D, Hanifin JP, et al. Sensitivity of the human circadian system to short-wavelength (420-nm) light. J Biol Rhythm. 2008;23:379–86.CrossRefGoogle Scholar
  72. 72.
    Stevens RG, Hansen J, Costa G, et al. Considerations of circadian impact for defining ‘shift work’ in cancer studies: IARC working group report. Occup Environ Med. 2011;68:154–62.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Parent-Thirion A, Fernandez Macias E, Huntly J, Vermeylen G. Fourth European working conditions survey. Luxembourg: Office for Official Publications of the European Communities; 2007.Google Scholar
  74. 74.
    McMenamin TM. A time to work: recent trends in shift work and flexible schedules. Mon Labor Rev. 2007;130:3–15.Google Scholar
  75. 75.
    Knutsson A, Alfredsson L, Karlsson B, et al. Breast cancer among shift workers: results of the WOLF longitudinal cohort study. Scand J Work Environ Health. 2013;39(2):170–7.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Koppes LL, Geuskens GA, Pronk A, Vermeulen RC, de Vroome EM. Night work and breast cancer risk in a general population prospective cohort study in the Netherlands. Eur J Epidemiol. 2014;29:577–84.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Gu F, Han J, Laden F, et al. Total and cause-specific mortality of U.S. nurses working rotating night shifts. Am J Prev Med. 2015;48:241–52.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Akerstedt T, Knutsson A, Narusyte J, Svedberg P, Kecklund G, Alexanderson K. Night work and breast cancer in women: a Swedish cohort study. BMJ Open. 2015;5(4):e008127.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Lie JA, Kjuus H, Zienolddiny S, Haugen A, Stevens RG, Kjaerheim K. Night work and breast cancer risk among Norwegian nurses: assessment by different exposure metrics. Am J Epidemiol. 2011;173:1272–9.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Hansen J, Lassen CF. Nested case-control study of night shift work and breast cancer risk among women in the Danish military. Occup Environ Med. 2012;69:551–6.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hansen J, Stevens RG. Case-control study of shift-work and breast cancer risk in Danish nurses: impact of shift systems. Eur J Cancer. 2012;48:1722–9.CrossRefGoogle Scholar
  82. 82.
    Menegaux F, Truong T, Anger A, et al. Night work and breast cancer: a population-based case-control study in France (the CECILE study). Int J Cancer. 2013;132:924–31.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Rabstein S, Harth V, Pesch B, et al. Night work and breast cancer estrogen receptor status-results from the German GENICA study. Scand J Work Environ Health. 2013;39(5):448–55.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Fritschi L, Erren TC, Glass DC, et al. The association between different night shiftwork factors and breast cancer: a case-control study. Br J Cancer. 2013;109:2472–80.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Grundy A, Richardson H, Burstyn I, et al. Increased risk of breast cancer associated with long-term shift work in Canada. Occup Environ Med. 2013;70:831–8.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Li W, Ray RM, Thomas DB, et al. Shift work and breast cancer among women textile workers in Shanghai, China. Cancer Causes Control. 2015;26:143–50.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Wang P, Ren FM, Lin Y, et al. Night-shift work, sleep duration, daytime napping, and breast cancer risk. Sleep Med. 2015;16:462–8.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Papantoniou K, Castano-Vinyals G, Espinosa A, et al. Breast cancer risk and night shift work in a case-control study in a Spanish population. Eur J Epidemiol. 2016;31:867–78.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Wegrzyn LR, Tamimi RM, Rosner BA, et al. Rotating night-shift work and the risk of breast cancer in the Nurses’ Health studies. Am J Epidemiol. 2017;186:532–40.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    ANSES. Opinion of the French Agency for Food, Environmental and Occupational Health & Safety on the “Assessment of the health risks associated with night work”. Request No 2011-SA-0088. May 2016.
  91. 91.
    ANSES (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail). Évaluation des risques sanitaires liés au travail de nuit. Avis de l’Anses et Rapport d’expertise collective. Maisons-Alfort: ANSES; 2016. 408 p.
  92. 92.
    Ijaz S, Verbeek J, Seidler A, et al. Night-shift work and breast cancer—a systematic review and meta-analysis. Scand J Work Environ Health. 2013;39:431–47.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Jia Y, Lu Y, Wu K, et al. Does night work increase the risk of breast cancer? A systematic review and meta-analysis of epidemiological studies. Cancer Epidemiol. 2013;37:197–206.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Kamdar BB, Tergas AI, Mateen FJ, Bhayani NH, Oh J. Night-shift work and risk of breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013;138:291–301.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Wang F, Yeung KL, Chan WC, et al. A meta-analysis on dose-response relationship between night shift work and the risk of breast cancer. Ann Oncol. 2013;24:2724–32.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    He C, Anand ST, Ebell MH, Vena JE, Robb SW. Circadian disrupting exposures and breast cancer risk: a meta-analysis. Int Arch Occup Environ Health. 2015;88:533–47.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Lin X, Chen W, Wei F, Ying M, Wei W, Xie X. Night-shift work increases morbidity of breast cancer and all-cause mortality: a meta-analysis of 16 prospective cohort studies. Sleep Med. 2015;16:1381–7.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Travis RC, Balkwill A, Fensom GK, et al. Night shift work and breast cancer incidence: three prospective studies and meta-analysis of published studies. J Natl Cancer Inst. 2016;108(12):djw169.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Stevens RG. Light-at-night, circadian disruption and breast cancer: assessment of existing evidence. Int J Epidemiol. 2009;38:963–70.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Schernhammer ES, Hankinson SE. Urinary melatonin levels and breast cancer risk. J Natl Cancer Inst. 2005;97:1084–7.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Schernhammer ES, Rosner B, Willett WC, Laden F, Colditz GA, Hankinson SE. Epidemiology of urinary melatonin in women and its relation to other hormones and night work. Cancer Epidemiol Biomark Prev. 2004;13:936–43.Google Scholar
  102. 102.
    Travis RC, Allen DS, Fentiman IS, Key TJ. Melatonin and breast cancer: a prospective study. J Natl Cancer Inst. 2004;96:475–82.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Wang JX, Zhang LA, Li BX, et al. Cancer incidence and risk estimation among medical x-ray workers in China, 1950-1995. Health Phys. 2002;82:455–66.CrossRefGoogle Scholar
  104. 104.
    Doody MM, Freedman DM, Alexander BH, et al. Breast cancer incidence in U.S. radiologic technologists. Cancer. 2006;106:2707–15.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Linet MS, Hauptmann M, Freedman DM, et al. Interventional radiography and mortality risks in U.S. radiologic technologists. Pediatr Radiol. 2006;36(Suppl 2):113–20.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    McGeoghegan D, Binks K. The mortality and cancer morbidity experience of workers at the Springfields uranium production facility, 1946–95. J Radiol Prot. 2000;20:111–37.CrossRefGoogle Scholar
  107. 107.
    Telle-Lamberton M, Bergot D, Gagneau M, et al. Cancer mortality among French atomic energy commission workers. Am J Ind Med. 2004;45:34–44.CrossRefGoogle Scholar
  108. 108.
    Shaham J, Gurvich R, Goral A, Czerniak A. The risk of breast cancer in relation to health habits and occupational exposures. Am J Ind Med. 2006;49:1021–30.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Sont WN, Zielinski JM, Ashmore JP, et al. First analysis of cancer incidence and occupational radiation exposure based on the National Dose Registry of Canada. Am J Epidemiol. 2001;153:309–18.CrossRefGoogle Scholar
  110. 110.
    Ashmore JP, Krewski D, Zielinski JM, Jiang H, Semenciw R, Band PR. First analysis of mortality and occupational radiation exposure based on the National Dose Registry of Canada. Am J Epidemiol. 1998;148:564–74.CrossRefGoogle Scholar
  111. 111.
    McGeoghegan D, Binks K. The mortality and cancer morbidity experience of workers at the Capenhurst uranium enrichment facility 1946–95. J Radiol Prot. 2000;20:381–401.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    McGeoghegan D, Gillies M, Riddell AE, Binks K. Mortality and cancer morbidity experience of female workers at the British nuclear fuels sellafield plant, 1946–1998. Am J Ind Med. 2003;44:653–63.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Silver SR, Whelan EA, Deddens JA, et al. Occupational exposure to polychlorinated biphenyls and risk of breast cancer. Environ Health Perspect. 2009;117(2):276–82.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Ruder AM, Hein MJ, Hopf NB, Waters MA. Mortality among 24,865 workers exposed to polychlorinated biphenyls (PCBs) in three electrical capacitor manufacturing plants: a ten-year update. Int J Hyg Environ Health. 2014;217:176–87.CrossRefGoogle Scholar
  115. 115.
    Engel LS, Werder E, Satagopan J, et al. Insecticide use and breast cancer risk among farmers’ wives in the Agricultural Health Study. Environ Health Perspect. 2017;125:097002.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Louis LM, Lerro CC, Friesen MC, et al. A prospective study of cancer risk among Agricultural Health Study farm spouses associated with personal use of organochlorine insecticides. Environ Health. 2017;16:95.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Rennix CP, Quinn MM, Amoroso PJ, Eisen EA, Wegman DH. Risk of breast cancer among enlisted army women occupationally exposed to volatile organic compounds. Am J Ind Med. 2005;48:157–67.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Sung TI, Chen PC, Jyuhn-Hsiarn LL, Lin YP, Hsieh GY, Wang JD. Increased standardized incidence ratio of breast cancer in female electronics workers. BMC Public Health. 2007;7:102.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Peplonska B, Stewart P, Szeszenia-Dabrowska N, et al. Occupational exposure to organic solvents and breast cancer in women. Occup Environ Med. 2010;67:722–9.Google Scholar
  120. 120.
    Labreche F, Goldberg MS, Valois MF, Nadon L. Postmenopausal breast cancer and occupational exposures. Occup Environ Med. 2010;67:263–9.Google Scholar
  121. 121.
    Hansen J. Breast cancer risk among relatively young women employed in solvent-using industries. Am J Ind Med. 1999;36:43–7.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Band PR, Le ND, Fang R, Deschamps M, Gallagher RP, Yang P. Identification of occupational cancer risks in British Columbia. A population-based case-control study of 995 incident breast cancer cases by menopausal status, controlling for confounding factors. J Occup Environ Med. 2000;42:284–310.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Peplonska B, Stewart P, Szeszenia-Dabrowska N, et al. Occupation and breast cancer risk in Polish women: a population-based case-control study. Am J Ind Med. 2007;50:97–111.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Chang YM, Tai CF, Yang SC, et al. A cohort mortality study of workers exposed to chlorinated organic solvents in Taiwan. Ann Epidemiol. 2003;13:652–60.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    McElvenny DM, Darnton AJ, Hodgson JT, Clarke SD, Elliott RC, Osman J. Investigation of cancer incidence and mortality at a Scottish semiconductor manufacturing facility. Occup Med (Lond). 2003;53:419–30.CrossRefGoogle Scholar
  126. 126.
    Boffetta P, Adami HO, Cole P, Trichopoulos D, Mandel JS. Epidemiologic studies of styrene and cancer: a review of the literature. J Occup Environ Med. 2009;51:1275–87.CrossRefGoogle Scholar
  127. 127.
    Costantini AS, Gorini G, Consonni D, Miligi L, Giovannetti L, Quinn M. Exposure to benzene and risk of breast cancer among shoe factory workers in Italy. Tumori. 2009;95:8–12.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Petralia SA, Vena JE, Freudenheim JL, et al. Risk of premenopausal breast cancer in association with occupational exposure to polycyclic aromatic hydrocarbons and benzene. Scand J Work Environ Health. 1999;25:215–21.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Pukkala E, Martinsen JI, Lynge E, et al. Occupation and cancer—follow-up of 15 million people in five Nordic countries. Acta Oncol. 2009;48:646–790.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Villeneuve S, Fevotte J, Anger A, et al. Breast cancer risk by occupation and industry: analysis of the CECILE study, a population-based case-control study in France. Am J Ind Med. 2011;54:499–509.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Forssen UM, Rutqvist LE, Ahlbom A, Feychting M. Occupational magnetic fields and female breast cancer: a case-control study using Swedish population registers and new exposure data. Am J Epidemiol. 2005;161:250–9.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    McElroy JA, Egan KM, Titus-Ernstoff L, et al. Occupational exposure to electromagnetic field and breast cancer risk in a large, population-based, case-control study in the United States. J Occup Environ Med. 2007;49:266–74.CrossRefGoogle Scholar
  133. 133.
    Gardner KM, Ou SX, Jin F, et al. Occupations and breast cancer risk among Chinese women in urban Shanghai. Am J Ind Med. 2002;42:296–308.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Labreche F, Goldberg MS, Valois MF, et al. Occupational exposures to extremely low frequency magnetic fields and postmenopausal breast cancer. Am J Ind Med. 2003;44:643–52.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Van Wijngaarden E, Nylander-French LA, Millikan RC, Savitz DA, Loomis D. Population-based case-control study of occupational exposure to electromagnetic fields and breast cancer. Ann Epidemiol. 2001;11:297–303.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Hansen J, Olsen JH, Larsen AI. Cancer morbidity among employees in a Danish pharmaceutical plant. Int J Epidemiol. 1994;23:891–8.CrossRefGoogle Scholar
  137. 137.
    Edling C, Friis L, Mikoczy Z, Hagmar L, Lindfors P. Cancer incidence among pharmaceutical workers. Scand J Work Environ Health. 1995;21:116–23.CrossRefGoogle Scholar
  138. 138.
    Harrington JM, Goldblatt P. Census based mortality study of pharmaceutical industry workers. Br J Ind Med. 1986;43:206–11.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Hansen J, Olsen JH. Cancer morbidity among Danish female pharmacy technicians. Scand J Work Environ Health. 1994;20:22–6.CrossRefGoogle Scholar
  140. 140.
    Shaham J, Gurvich R, Kneshet Y. Cancer incidence among laboratory workers in biomedical research and routine laboratories in Israel: part II-nested case-control study. Am J Ind Med. 2003;44:611–26.CrossRefGoogle Scholar
  141. 141.
    Gustavsson P, Andersson T, Gustavsson A, Reuterwall C. Cancer incidence in female laboratory employees: extended follow-up of a Swedish cohort study. Occup Environ Med. 2017;74:823–6.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Brophy JT, Keith MM, Gorey KM, et al. Occupation and breast cancer: a Canadian case-control study. Ann N Y Acad Sci. 2006;1076:765–77.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Pinkerton LE, Hein MJ, Stayner LT. Mortality among a cohort of garment workers exposed to formaldehyde: an update. Occup Environ Med. 2004;61(3):193–200.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Rafnsson V, Sulem P, Tulinius H, Hrafnkelsson J. Breast cancer risk in airline cabin attendants: a nested case-control study in Iceland. Occup Environ Med. 2003;60:807–9.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Linnersjo A, Hammar N, Dammstrom BG, Johansson M, Eliasch H. Cancer incidence in airline cabin crew: experience from Sweden. Occup Environ Med. 2003;60:810–4.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Haldorsen T, Reitan JB, Tveten U. Cancer incidence among Norwegian airline cabin attendants. Int J Epidemiol. 2001;30:825–30.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Zeeb H, Blettner M, Langner I, et al. Mortality from cancer and other causes among airline cabin attendants in Europe: a collaborative cohort study in eight countries. Am J Epidemiol. 2003;158:35–46.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Kojo K, Pukkala E, Auvinen A. Breast cancer risk among Finnish cabin attendants: a nested case-control study. Occup Environ Med. 2005;62:488–93.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Clapp RW, Hoffman K. Cancer mortality in IBM Endicott plant workers, 1969–2001: an update on a NY production plant. Environ Health. 2008;7:13.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    MacArthur AC, Le ND, Abanto ZU, Gallagher RP. Occupational female breast and reproductive cancer mortality in British Columbia, Canada, 1950–94. Occup Med (Lond). 2007;57:246–53.CrossRefGoogle Scholar
  151. 151.
    Quach T, Doan-Billing PA, Layefsky M, et al. Cancer incidence in female cosmetologists and manicurists in California, 1988–2005. Am J Epidemiol. 2010;172:691–9.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. UNSCEAR 2008 report to the general assembly with scientific annexes, vol. 1. New York: United Nations; 2010.Google Scholar
  153. 153.
    Wang F-R, Fang Q-Q, Tang W-M, et al. Nested case-control study of occupational radiation exposure and breast and esophagus cancer risk among medical diagnostic X Ray Workers in Jiangsu of China. Asian Pac J Cancer Prev. 2015;16:4699–704.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Preston DL, Kitahara CM, Freedman DM, et al. Breast cancer risk and protracted low-to-moderate dose occupational radiation exposure in the US Radiologic Technologists Cohort, 1983-2008. Br J Cancer. 2016;115:1105–12.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Yoshinaga S, Mabuchi K, Sigurdson AJ, Doody MM, Ron E. Cancer risks among radiologists and radiologic technologists: review of epidemiologic studies. Radiology. 2004;233:313–21.CrossRefGoogle Scholar
  156. 156.
    Linet MS, Kim KP, Miller DL, Kleinerman RA, Simon SL, Berrington de Gonzalez A. Historical review of occupational exposures and cancer risks in medical radiation workers. Radiat Res. 2010;174:793–808.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Boice JD Jr, Cohen SS, Mumma MT, Chadda B, Blot WJ. A cohort study of uranium millers and miners of Grants, New Mexico, 1979-2005. J Radiol Prot. 2008;28(3):303–25.CrossRefGoogle Scholar
  158. 158.
    Samson E, Piot I, Zhivin S, et al. Cancer and non-cancer mortality among French uranium cycle workers: the TRACY cohort. BMJ Open. 2016;6(4):e010316.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Buitenhuis W, Fritschi L, Thomson A, Glass D, Heyworth J, Peters S. Occupational exposure to ionizing radiation and risk of breast cancer in Western Australia. J Occup Environ Med. 2013;55:1431–5.CrossRefGoogle Scholar
  160. 160.
    Sont WN, Zielinski JM, Ashmore JP, et al. Sont et al. Respond to “studies of workers exposed to low doses of radiation”. Am J Epidemiol. 2001;153:323–4.CrossRefGoogle Scholar
  161. 161.
    Ruder AM, Hein MJ, Hopf NB, Waters MA. Cancer incidence among capacitor manufacturing workers exposed to polychlorinated biphenyls. Am J Ind Med. 2017;60:198–207.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Guyton KZ, Loomis D, Grosse Y, et al. Carcinogenicity of pentachlorophenol and some related compounds. Lancet Oncol. 2016;17:1637–8.CrossRefGoogle Scholar
  163. 163.
    Han Y, Mo R, Yuan X, et al. Pesticide residues in nut-planted soils of China and their relationship between nut/soil. Chemosphere. 2017;180:42–7.CrossRefGoogle Scholar
  164. 164.
    Gevao B, Porcelli M, Rajagopalan S, et al. Spatial and temporal variations in the atmospheric concentrations of “Stockholm Convention” organochlorine pesticides in Kuwait. Sci Total Environ. 2018;622–623:1621–9. pii: S0048-9697(17)32737–7.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Dang VD, Kroll KJ, Supowit SD, Halden RU, Denslow ND. Tissue distribution of organochlorine pesticides in largemouth bass (Micropterus salmoides) from laboratory exposure and a contaminated lake. Environ Pollut. 2016;216:877–8.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Campillo JA, Fernandez B, Garcia V, Benedicto J, Leon VM. Levels and temporal trends of organochlorine contaminants in mussels from Spanish Mediterranean waters. Chemosphere. 2017;182:584–94.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Høyer AP, Grandjean P, Jørgensen T, Brock JW, Hartvig HB. Organochlorine exposure and risk of breast cancer. Lancet. 1998;352:1816–20.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Gammon MD, Wolff MS, Neugut AI, et al. Environmental toxins and breast cancer on Long Island. II. Organochlorine compound levels in blood. Cancer Epidemiol Biomarkers Prev. 2002;11:686–97.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Ward EM, Schulte P, Grajewski B, et al. Serum organochlorine levels and breast cancer: a nested case-control study of Norwegian women. Cancer Epidemiol Biomarkers Prev. 2000;9:1357–67.PubMedPubMedCentralGoogle Scholar
  170. 170.
    IARC. Monographs on the evaluation on carcinogenic risks to humans. Some drugs and herbal products, vol. 108. Lyon: International Agency for Research on Cancer; 2016.Google Scholar
  171. 171.
    Connor TH, McDiarmid MA. Preventing occupational exposures to antineoplastic drugs in health care settings. CA Cancer J Clin. 2006;56:354–65.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Heron RJ, Pickering FC. Health effects of exposure to Active Pharmaceutical Ingredients (APIs). Occup Med (Lond). 2003;53:357–62.CrossRefGoogle Scholar
  173. 173.
    Thomas TL, Decoufle P. Mortality among workers employed in the pharmaceutical industry: a preliminary investigation. J Occup Med. 1979;21:619–23.PubMedPubMedCentralGoogle Scholar
  174. 174.
    Baker CC, Russell RA, Roder DM, Esterman AJ. A nine year retrospective mortality study of workers in a British pharmaceutical company. J Soc Occup Med. 1986;36:95–8.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Ekenga CC, Parks CG, D’Aloisio AA, Deroo LA, Sandler DP. Breast cancer risk after occupational solvent exposure: the influence of timing and setting. Cancer Res. 2014;74(11):3076–83.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    IARC. Monographs on the evaluation on carcinogenic risks to humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures, vol. 92. Lyon: International Agency for Research on Cancer; 2010.Google Scholar
  177. 177.
    Rai R, Glass DC, Heyworth JS, Saunders C, Fritschi L. Occupational exposures to engine exhausts and other PAHs and breast cancer risk: a population-based case-control study. Am J Ind Med. 2016;59:437–44.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Jeffy BD, Chirnomas RB, Romagnolo DF. Epigenetics of breast cancer: polycyclic aromatic hydrocarbons as risk factors. Environ Mol Mutagen. 2002;39:235–44.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    de Vocht F, Sobala W, Wilczynska U, Kromhout H, Szeszenia-Dabrowska N, Peplonska B. Cancer mortality and occupational exposure to aromatic amines and inhalable aerosols in rubber tire manufacturing in Poland. Cancer Epidemiol. 2009;33:94–102.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Rabstein S, Bruning T, Harth V, et al. N-acetyltransferase 2, exposure to aromatic and heterocyclic amines, and receptor-defined breast cancer. Eur J Cancer Prev. 2010;19:100–9.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Thompson D, Kriebel D, Quinn MM, Wegman DH, Eisen EA. Occupational exposure to metalworking fluids and risk of breast cancer among female autoworkers. Am J Ind Med. 2005;47:153–60.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Caplan LS, Schoenfeld ER, O’Leary ES, Leske MC. Breast cancer and electromagnetic fields—a review. Ann Epidemiol. 2000;10:31–44.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    IARC. Monographs on the evaluation on carcinogenic risks to humans. Non-ionizing radiation. Part 1: static and extremely low-frequency (ELF) electric and magnetic fields, vol. 80. Lyon: International Agency for Research on Cancer; 2002.Google Scholar
  184. 184.
    Goodman M, Kelsh M, Ebi K, Iannuzzi J, Langholz B. Evaluation of potential confounders in planning a study of occupational magnetic field exposure and female breast cancer. Epidemiology. 2002;13:50–8.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Ahlbom IC, Cardis E, Green A, Linet M, Savitz D, Swerdlow A. Review of the epidemiologic literature on EMF and Health. Environ Health Perspect. 2001;109(Suppl 6):911–33.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Johansen C. Electromagnetic fields and health effects–epidemiologic studies of cancer, diseases of the central nervous system and arrhythmia-related heart disease. Scand J Work Environ Health. 2004;30(Suppl 1):1–30.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Feychting M, Forssen U. Electromagnetic fields and female breast cancer. Cancer Causes Control. 2006;17:553–8.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Engel LS, Hill DA, Hoppin JA, et al. Pesticide use and breast cancer risk among farmers’ wives in the agricultural health study. Am J Epidemiol. 2005;161:121–35.CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Salehi F, Turner MC, Phillips KP, Wigle DT, Krewski D, Aronson KJ. Review of the etiology of breast cancer with special attention to organochlorines as potential endocrine disruptors. J Toxicol Environ Health B Crit Rev. 2008;11:276–300.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Manuwald U, Velasco GM, Berger J, Manz A, Baur X. Mortality study of chemical workers exposed to dioxins: follow-up 23 years after chemical plant closure. Occup Environ Med. 2012;69:636–42.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Brody JG, Moysich KB, Humblet O, Attfield KR, Beehler GP, Rudel RA. Environmental pollutants and breast cancer: epidemiologic studies. Cancer. 2007;109(Suppl 12):2667–711.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    McCready D, Aronson KJ, Chu W, Fan W, Vesprini D, Narod SA. Breast tissue organochlorine levels and metabolic genotypes in relation to breast cancer risk Canada. Cancer Causes Control. 2004;15:399–418.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Franco G. Bernardino Ramazzini and women workers’ health in the second half of the XVIIth century. J Public Health (Oxf). 2012;34:305–8.CrossRefGoogle Scholar
  194. 194.
    Goldberg MS, Labreche F. Occupational risk factors for female breast cancer: a review. Occup Environ Med. 1996;53:145–56.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Carpenter L, Roman E. Cancer and occupation in women: identifying associations using routinely collected national data. Environ Health Perspect. 1999;107(Suppl 2):299–303.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Bernstein L, Allen M, Anton-Culver H, et al. High breast cancer incidence rates among California teachers: results from the California teachers study (United States). Cancer Causes Control. 2002;13:625–35.CrossRefGoogle Scholar
  197. 197.
    Teitelbaum SL, Britton JA, Gammon MD, et al. Occupation and breast cancer in women 20–44 years of age (United States). Cancer Causes Control. 2003;14:627–37.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Kullberg C, Selander J, Albin M, Borgquist S, Manjer J, Gustavsson P. Female white-collar workers remain at higher risk of breast cancer after adjustments for individual risk factors related to reproduction and lifestyle. Occup Environ Med. 2017;74(9):652–8.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Larsen SB, Olsen A, Lynch J, et al. Socioeconomic position and lifestyle in relation to breast cancer incidence among postmenopausal women: a prospective cohort study, Denmark, 1993–2006. Cancer Epidemiol. 2011;35:438–41.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Oddone E, Edefonti V, Scaburri A, Vai T, Crosignani P, Imbriani M. Female breast cancer in Lombardy, Italy (2002-2009): a case-control study on occupational risks. Am J Ind Med. 2013;56(9):1051–62.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Simning A, Van WE. Literature review of cancer mortality and incidence among dentists. Occup Environ Med. 2007;64:432–8.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Nichols L, Sorahan T. Mortality of UK electricity generation and transmission workers, 1973–2002. Occup Med (Lond). 2005;55:541–8.CrossRefGoogle Scholar
  203. 203.
    Brophy JT, Keith MM, Watterson A, et al. Breast cancer risk in relation to occupations with exposure to carcinogens and endocrine disruptors: a Canadian case-control study. Environ Health. 2012;11:87.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Colt JS, Stallones L, Cameron LL, Dosemeci M, Zahm SH. Proportionate mortality among US migrant and seasonal farmworkers in twenty-four states. Am J Ind Med. 2001;40:604–11.CrossRefGoogle Scholar
  205. 205.
    Nanni O, Ravaioli A, Bucchi L, et al. Relative and absolute cancer mortality of women in agriculture in Northern Italy. Eur J Cancer Prev. 2005;14:337–444.CrossRefGoogle Scholar
  206. 206.
    Mills PK, Shah P. Cancer incidence in California farm workers, 1988-2010. Am J Ind Med. 2014;57(7):737–47.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Whelan EA. Cancer incidence in airline cabin crew. Occup Environ Med. 2003;60:805–6.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Schubauer-Berigan MK, Anderson JL, Hein MJ, Little MP, Sigurdson AJ, Pinkerton LE. Breast cancer incidence in a cohort of U.S. flight attendants. Am J Ind Med. 2015;58:252–66.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Pinkerton LE, Hein MJ, Anderson JL, Little MP, Sigurdson AJ, Schubauer-Berigan MK. Breast cancer incidence among female flight attendants: exposure-response analyses. Scand J Work Environ Health. 2016;42:538–46.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Coyle YM. The effect of environment on breast cancer risk. Breast Cancer Res Treat. 2004;84:273–88.CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Jablonska E, Socha K, Reszka E, et al. Cadmium, arsenic, selenium and iron–implications for tumor progression in breast cancer. Environ Toxicol Pharmacol. 2017;53:151–7.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Lewis-Michl EL, Melius JM, Kallenbach LR, et al. Breast cancer risk and residence near industry or traffic in Nassau and Suffolk Counties, Long Island, New York. Arch Environ Health. 1996;51:255–65.CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Bonner MR, Han D, Nie J, et al. Breast cancer risk and exposure in early life to polycyclic aromatic hydrocarbons using total suspended particulates as a proxy measure. Cancer Epidemiol Biomarkers Prev. 2005;14:53–60.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Nie J, Beyea J, Bonner MR, et al. Exposure to traffic emissions throughout life and risk of breast cancer: the Western New York Exposures and Breast Cancer (WEB) study. Cancer Causes Control. 2007;18:947–55.CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Hart JE, Bertrand KA, DuPre N, et al. Long-term particulate matter exposures during adulthood and risk of breast cancer incidence in the Nurses’ Health Study II Prospective Cohort. Cancer Epidemiol Biomarkers Prev. 2016;25:1274–6.CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Reding KW, Young MT, Szpiro AA, et al. Breast cancer risk in relation to ambient air pollution exposure at residences in the sister study cohort. Cancer Epidemiol Biomarkers Prev. 2015;24:1907–9.CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Crouse DL, Goldberg MS, Ross NA, Chen H, Labreche F. Postmenopausal breast cancer is associated with exposure to traffic-related air pollution in Montreal, Canada: a case-control study. Environ Health Perspect. 2010;118:1578–83.CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Goldberg MS, Labrèche F, Weichenthal S, et al. The association between the incidence of postmenopausal breast cancer and concentrations at street-level of nitrogen dioxide and ultrafine particles. Environ Res. 2017;158:7–15.CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Hystad P, Villeneuve PJ, Goldberg MS, Crouse DL, Johnson K. Exposure to traffic-related air pollution and the risk of developing breast cancer among women in eight Canadian provinces: a case-control study. Environ Int. 2015;74:240–8.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Rothman N, Wacholder S, Caporaso NE, Garcia-Closas M, Buetow K, Fraumeni JF Jr. The use of common genetic polymorphisms to enhance the epidemiologic study of environmental carcinogens. Biochim Biophys Acta. 2001;1471:C1–10.PubMedPubMedCentralGoogle Scholar
  221. 221.
    Masson LF, Sharp L, Cotton SC, Little J. Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer: a HuGE review. Am J Epidemiol. 2005;161:901–15.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Rihs HP, Pesch B, Kappler M, et al. Occupational exposure to polycyclic aromatic hydrocarbons in German industries: association between exogenous exposure and urinary metabolites and its modulation by enzyme polymorphisms. Toxicol Lett. 2005;157:241–55.CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Zhang Y, Wise JP, Holford TR, et al. Serum polychlorinated biphenyls, cytochrome P-450 1A1 polymorphisms, and risk of breast cancer in Connecticut women. Am J Epidemiol. 2004;160:1177–83.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Moysich KB, Shields PG, Freudenheim JL, et al. Polychlorinated biphenyls, cytochrome P4501A1 polymorphism, and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev. 1999;8:41–4.PubMedPubMedCentralGoogle Scholar
  225. 225.
    Laden F, Ishibe N, Hankinson SE, et al. Polychlorinated biphenyls, cytochrome P450 1A1, and breast cancer risk in the nurses’ health study. Cancer Epidemiol Biomarkers Prev. 2002;11:1560–5.PubMedPubMedCentralGoogle Scholar
  226. 226.
    Surekha D, Sailaja K, Rao DN, Padma T, Raghunadharao D, Vishnupriya S. Association of CYP1A1∗2 polymorphisms with breast cancer risk: a case control study. Indian J Med Sci. 2009;63:13–20.CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Chang-Claude J, Kropp S, Jager B, Bartsch H, Risch A. Differential effect of NAT2 on the association between active and passive smoke exposure and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2002;11:698–704.PubMedPubMedCentralGoogle Scholar
  228. 228.
    Terry PD, Goodman M. Is the association between cigarette smoking and breast cancer modified by genotype? A review of epidemiologic studies and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15:602–11.CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Conlon MS, Johnson KC, Bewick MA, Lafrenie RM, Donner A. Smoking (active and passive), N-acetyltransferase 2, and risk of breast cancer. Cancer Epidemiol. 2010;34:142–9.CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Mitrunen K, Jourenkova N, Kataja V, et al. Glutathione S-transferase M1, M3, P1, and T1 genetic polymorphisms and susceptibility to breast cancer. Cancer Epidemiol Biomarkers Prev. 2001;10:229–36.PubMedPubMedCentralGoogle Scholar
  231. 231.
    Park SK, Yoo KY, Lee SJ, et al. Alcohol consumption, glutathione S-transferase M1 and T1 genetic polymorphisms and breast cancer risk. Pharmacogenetics. 2000;10:301–9.CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Helzlsouer KJ, Selmin O, Huang HY, et al. Association between glutathione S-transferase M1, P1, and T1 genetic polymorphisms and development of breast cancer. J Natl Cancer Inst. 1998;90:512–8.CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Sturmer T, Wang-Gohrke S, Arndt V, et al. Interaction between alcohol dehydrogenase II gene, alcohol consumption, and risk for breast cancer. Br J Cancer. 2002;87:519–23.CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Barrdahl M, Rudolph A, Hopper JL, et al. Gene-environment interactions involving functional variants: results from the breast Cancer Association Consortium. Int J Cancer. 2017;141:1830–40.CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Iarmarcovai G, Bonassi S, Botta A, Baan RA, Orsiere T. Genetic polymorphisms and micronucleus formation: a review of the literature. Mutat Res. 2008;658:215–33.CrossRefGoogle Scholar
  236. 236.
    Furberg H, Millikan RC, Geradts J, et al. Environmental factors in relation to breast cancer characterized by p53 protein expression. Cancer Epidemiol Biomarkers Prev. 2002;11:829–35.PubMedPubMedCentralGoogle Scholar
  237. 237.
    Nurminen M, Karjalainen A. Epidemiologic estimate of the proportion of fatalities related to occupational factors in Finland. Scand J Work Environ Health. 2001;27:161–213.CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Slack R, Young C, Rushton L. Occupational cancer in Britain—female cancers: breast, cervix and ovary. Br J Cancer. 2012;107(Suppl 1):S27–32.CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Purdue MP, Hutchings SJ, Rushton L, Silverman DT. The proportion of cancer attributable to occupational exposures. Ann Epidemiol. 2015;25:188–92.CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Carey RN, Hutchings SJ, Rushton L, et al. The future excess fraction of occupational cancer among those exposed to carcinogens at work in Australia in 2012. Cancer Epidemiol. 2017;47:1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Forman D, Bray F, Brewster DH, et al., editors. Cancer incidence in five continents, vol. X. IARC Scientific Publication No. 164. Lyon: International Agency for Research on Cancer; 2014. Accessed 31 July 2017.Google Scholar
  242. 242.
    Gatta G, van der Zwan JM, Casali PG, et al. Rare cancers are not so rare: the rare cancer burden in Europe. Eur J Cancer. 2011;47:2493–511.CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Stang A, Thomssen C. Decline in breast cancer incidence in the United States: what about male breast cancer? Breast Cancer Res Treat. 2008;112:595–6.CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Contractor KB, Kaur K, Rodrigues GS, Kulkarni DM, Singhal H. Male breast cancer: is the scenario changing. World J Surg Oncol. 2008;6:58.CrossRefPubMedPubMedCentralGoogle Scholar
  245. 245.
    Miao H, Verkooijen H, Chia KS, et al. Incidence and outcome of male breast cancer: an international population-based study. J Clin Oncol. 2011;29:4381–6.CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Weiss JR, Moysich KB, Swede H. Epidemiology of male breast cancer. Cancer Epidemiol Biomarkers Prev. 2005;14:20–6.CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Ottini L, Palli D, Rizzo S, Federico M, Bazan V, Russo A. Male breast cancer. Crit Rev Oncol Hematol. 2010;73:141–55.CrossRefPubMedPubMedCentralGoogle Scholar
  248. 248.
    Ewertz M, Holmberg L, Tretli S, Pedersen BV, Kristensen A. Risk factors for male breast cancer—a case-control study from Scandinavia. Acta Oncol. 2001;40:467–71.CrossRefPubMedPubMedCentralGoogle Scholar
  249. 249.
    Guenel P, Cyr D, Sabroe S, et al. Alcohol drinking may increase risk of breast cancer in men: a European population-based case-control study. Cancer Causes Control. 2004;15:571–80.CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Lynge E, Afonso N, Kaerlev L, et al. European multi-centre case-control study on risk factors for rare cancers of unknown aetiology. Eur J Cancer. 2005;41:601–12.CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Fentiman IS, Fourquet A, Hortobagyi GN. Male breast cancer. Lancet. 2006;367:595–604.CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    Thomas DB, Rosenblatt K, Jimenez LM, et al. Ionizing radiation and breast cancer in men (United States). Cancer Causes Control. 1994;5:9–14.CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    Little MP, McElvenny DM. Male breast cancer incidence and mortality risk in the Japanese atomic bomb survivors—differences in excess relative and absolute risk from female breast cancer. Environ Health Perspect. 2017;125:223–9.CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Charbotel B, Fervers B, Droz JP. Occupational exposures in rare cancers: a critical review of the literature. Crit Rev Oncol Hematol. 2014;90:99–134.CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Pollan M, Gustavsson P, Floderus B. Breast cancer, occupation, and exposure to electromagnetic fields among Swedish men. Am J Ind Med. 2001;39:276–85.CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Sun JW, Li XR, Gao HY, et al. Electromagnetic field exposure and male breast cancer risk: a meta-analysis of 18 studies. Asian Pac J Cancer Prev. 2013;14:523–8.CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Hansen J. Elevated risk for male breast cancer after occupational exposure to gasoline and vehicular combustion products. Am J Ind Med. 2000;37:349–52.CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Cocco P, Figgs L, Dosemeci M, Hayes R, Linet MS, Hsing AW. Case-control study of occupational exposures and male breast cancer. Occup Environ Med. 1998;55:599–604.CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Kimbrough RD, Krouskas CA, Xu W, Shields PG. Mortality among capacitor workers exposed to polychlorinated biphenyls (PCBs), a long-term update. Int Arch Occup Environ Health. 2015;88:85–101.CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    Mabuchi K, Bross DS, Kessler II. Risk factors for male breast cancer. J Natl Cancer Inst. 1985;74:371–5.PubMedPubMedCentralGoogle Scholar
  261. 261.
    Lenfant-Pejovic MH, Mlika-Cabanne N, Bouchardy C, Auquier A. Risk factors for male breast cancer: a Franco-Swiss case-control study. Int J Cancer. 1990;45:661–5.CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Rosenbaum PF, Vena JE, Zielezny MA, Michalek AM. Occupational exposures associated with male breast cancer. Am J Epidemiol. 1994;139:30–6.CrossRefPubMedPubMedCentralGoogle Scholar
  263. 263.
    Kaplan SD. Retrospective cohort mortality study of Roman Catholic priests. Prev Med. 1988;17:335–43.CrossRefPubMedPubMedCentralGoogle Scholar
  264. 264.
    Rigoni S. Statistical facts about cancers on which Doctor Rigoni-Stern based his contribution to the Surgeons’ Subgroup of the IV Congress of the Italian Scientists on 23 September 1842. (translation). Stat Med. 1987;6:881–4.CrossRefGoogle Scholar
  265. 265.
    Fritschi L, Guenel P, Ahrens W. Breast cancer in priests: follow-up of an observation made 167 years ago. Eur J Epidemiol. 2010;25:219–21.CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Swaen GM, Burns C, Teta JM, Bodner K, Keenan D, Bodnar CM. Mortality study update of ethylene oxide workers in chemical manufacturing: a 15 year update. J Occup Environ Med. 2009;51:714–23.CrossRefPubMedPubMedCentralGoogle Scholar
  267. 267.
    Wirth M, Vena JE, Smith EK, Bauer SE, Violanti J, Burch J. The epidemiology of cancer among police officers. Am J Ind Med. 2013;56:439–53.CrossRefPubMedPubMedCentralGoogle Scholar
  268. 268.
    Ma F, Fleming LE, Lee DJ, et al. Mortality in Florida professional firefighters, 1972 to 1999. Am J Ind Med. 2005;47:509–17.CrossRefPubMedPubMedCentralGoogle Scholar
  269. 269.
    Glass DC, Pircher S, Del Monaco A, Hoorn SV, Sim MR. Mortality and cancer incidence in a cohort of male paid Australian firefighters. Occup Environ Med. 2016;73:761–71.PubMedPubMedCentralGoogle Scholar
  270. 270.
    Ma F, Fleming LE, Lee DJ, Trapido E, Gerace TA. Cancer incidence in Florida professional firefighters, 1981 to 1999. J Occup Environ Med. 2006;48:883–8.CrossRefGoogle Scholar
  271. 271.
    Daniels RD, Kubale TL, Yiin JH, et al. Mortality and cancer incidence in a pooled cohort of US firefighters from San Francisco, Chicago and Philadelphia (1950-2009). Occup Environ Med. 2014;71:388–97.CrossRefPubMedPubMedCentralGoogle Scholar
  272. 272.
    Villeneuve S, Cyr D, Lynge E, et al. Occupation and occupational exposure to endocrine disrupting chemicals in male breast cancer: a case-control study in Europe. Occup Environ Med. 2010;67:837–44.CrossRefPubMedPubMedCentralGoogle Scholar
  273. 273.
    Palli D, Masala G, Mariani-Costantini R, et al. A gene-environment interaction between occupation and BRCA1/BRCA2 mutations in male breast cancer? Eur J Cancer. 2004;40:2474–9.CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Nilsson C, Holmqvist M, Bergkvist L, Hedenfalk I, Lambe M, Fjallskog ML. Similarities and differences in the characteristics and primary treatment of breast cancer in men and women—a population based study (Sweden). Acta Oncol. 2011;50:1083–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • France Labrèche
    • 1
    • 2
  • Mark S. Goldberg
    • 3
  • Dana Hashim
    • 4
    • 5
  • Elisabete Weiderpass
    • 5
    Email author
  1. 1.Research and Expertise DivisionInstitut de recherche Robert-Sauvé en santé et en sécurité du travailMontrealCanada
  2. 2.Département de Santé environnementale et santé au travail, École de santé publiqueUniversité de MontréalMontrealCanada
  3. 3.Division of Clinical Epidemiology, Department of MedicineMcGill University, and Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health CentreMontrealCanada
  4. 4.Icahn School of Medicine at Mount SinaiNew YorkUSA
  5. 5.International Agency for Research on Cancer (IARC), World Health Organization (WHO)LyonFrance

Personalised recommendations