Malignant Mesothelioma: Asbestos Exposure

  • Richard L. AttanoosEmail author


Malignant mesothelioma is an uncommon cancer arising from the serosa of the pleura, peritoneum, pericardium, and tunica vaginalis testis. There have been substantial recent developments in relation to optimizing its accurate diagnosis and distinction from its mimics, understanding its molecular pathobiology and characterizing its varied causes. However, over the past five decades, there have been only modest improvements in the median overall survival of patients with the disease. Despite a better understanding of prognostic factors, malignant mesothelioma remains an almost invariably fatal cancer despite treatment. The proportion of malignant mesothelioma cases attributable to asbestos varies considerably according to fiber type, occupation and industry, tumor site, and gender. It is important to be mindful of the recent scientific literature when evaluating mesothelioma causation in extrapleural sites, in women, and in young persons because most of these cases are not likely asbestos-related cancers. These minority cases contrast with the majority of pleural mesotheliomas in men which are primarily caused by asbestos, most typically commercial amphiboles following occupational exposures.


Asbestos exposure Asbestos mineralogy Malignant mesothelioma Asbestos type Asbestos fiber counting Pulmonary asbestos analysis 


  1. 1.
    Tossavainen A. Asbestos, asbestosis and cancer: exposure criteria for clinical diagnosis. People Work Res Rep. 1997;14:8–27. Helsinki: Finnish Institute of Occupational Health.Google Scholar
  2. 2.
    Peto J, Decarli A, La Vecchia C, et al. The European mesothelioma epidemic. Br J Cancer. 1999;79:666–72.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Delgarmaa V, Takahashi K, Park E. Global mesothelioma deaths report to the World Health Organization between 1994 and 2008. Bull WHO. 2011;89:716–24.Google Scholar
  4. 4.
    Rake C, Gilham C, Hatch J, et al. Occupational, domestic and environmental mesothelioma risks in the British population: a case-control study. Br J Cancer. 2009;100(7):1175–83.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Glynn ME, Keeton KA, Gaffney SH, et al. Ambient asbestos fiber concentrations and long-term trends in pleural mesothelioma incidence between urban and rural areas in the United States (1973–2012). Risk Anal. 2018;38(3):454–71. Scholar
  6. 6.
    Gibbs AR, Pooley FD, Attanoos RL. Establishing ‘control’ standards to aid the diagnosis of asbestosis: asbestos fibre burden and fibrosis in the lungs of non-occupationally exposed persons. Mod Pathol. 2005;18(Suppl 1):1439.Google Scholar
  7. 7.
    Attanoos RL, Gibbs AR. RCPath autopsy guideline for industrial lung disease. July 2017.
  8. 8.
    Gilham C, Rake C, Burdett G, et al. Pleural mesothelioma and lung cancer risks in relation to occupational history and asbestos lung burden. Occup Environ Med. 2016;73(5):290–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Goswami E, Craven V, Dahlstrom DL, et al. Domestic asbestos exposure: a review of epidemiologic and exposure data. Int J Environ Res Public Health. 2013;10(11):5629–70.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Marsh GM, Riordan AS, Keeton KA, et al. Non-occupational exposure to asbestos and risk of pleural mesothelioma: review and meta-analysis. Occup Environ Med. 2017;74(11):838–46.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Mezei G, Chang ET, Mowat FS, Moolgavkar SH. Epidemiology of mesothelioma of the pericardium and tunica vaginalis testis. Ann Epidemiol. 2017;27(5):348–59.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lowry SJ, Weiss NS. Geographic distribution of incidence of pericardial and paratesticular mesotheliomas in the USA. Cancer Causes Control. 2016;27(12):1487–9.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lanphear BP, Buncher CR. Latent period for malignant mesothelioma of occupational origin. J Occup Med. 1992;34:718–21.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bianchi C, Giarelli L, Grandi G, et al. Latency periods in asbestos-related mesothelioma of the pleura. Eur J Cancer Prev. 1997;6(2):162–6.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Craighead JE, Gibbs AR, Pooley FD. Chapter 2: Mineralogy of asbestos. In: Craighead JE, Gibbs AR, editors. Asbestos and its disease. New York: Oxford University Press; 2008. p. 23–38.CrossRefGoogle Scholar
  16. 16.
    Addison J, McConnell E. A review of carcinogenicity studies of asbestos and non-asbestos tremolite and other amphiboles. Regul Toxicol Pharmacol. 2008;52:S187–99.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Gamble J, Gibb G. An evaluation of the risks of lung cancer and mesothelioma from exposure to amphibole cleavage fragments. Regul Toxicol Pharmacol. 2008;52:S154–86.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Mossman B. Assessment of the pathogenic potential of asbestiform vs. nonasbestiform particulates (cleavage fragments) in in vitro (cell or organ culture) models and bioassays. Regul Toxicol Pharmacol. 2008;52:S200–3.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Price B, Ware A. Time trend of mesothelioma incidence in the United States and projection of future cases: an update based on SEER data for 1973 through 2005. Crit Rev Toxicol. 2009;39(7):576–88.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Moolgavkar SH, Meza R, Turim J. Pleural and peritoneal mesotheliomas in SEER: age effects and temporal trends, 1973-2005. Cancer Causes Control. 2009;20(6):935–44.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Spirtas R, Heineman EF, Bernstein L, et al. Malignant mesothelioma: attributable risk of asbestos exposure. Occup Environ Med. 1994;51(12):804–11.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lacourt A, Gramond C, Rolland P, et al. Occupational and nonoccupational attributable risk of asbestos exposure for malignant pleural mesothelioma. Thorax. 2014;69(6):532–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Gorini G, Silvestri S, Merler E, et al. Tuscany mesothelioma registry (1988-2000): evaluation of asbestos exposure. Med Lav. 2002;93(6):507–18.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Marinaccio A, Binazzi A, Marzio DD, et al. ReNaM Working Group. Pleural malignant mesothelioma epidemic: incidence, modalities of asbestos exposure and occupations involved from the Italian National Register. Int J Cancer. 2012;130(9):2146–54.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Gilg Soit Ilg A, Bignon J, Valleron AJ. Estimation of the past and future burden of mortality from mesothelioma in France. Occup Environ Med. 1998;55:760–5.CrossRefGoogle Scholar
  26. 26.
    Hemminki K, Li X. Time trends and occupational risk factors for peritoneal mesothelioma in Sweden. J Occup Environ Med. 2003;45(4):451–5.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Burdorf A, Jarvholm B, Siesling S. Asbestos exposure and differences in occurrence of peritoneal mesothelioma between men and women across countries. Occup Environ Med. 2007;64(12):839–42.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Henley SJ, Larson TC, Wu M, et al. Mesothelioma incidence in 50 states and the District of Columbia, United States, 2003–2008. Int J Occup Environ Health. 2013;19(1):1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Bueno R, Stawiski EW, Goldstein LD, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48(4):407–16.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Alakus H, Yost SE, Woo B, et al. BAP 1 mutation is a frequent somatic event in peritoneal malignant mesothelioma. J Transl Med. 2015;13:122–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Leblay N, Leprêtre F, Le Stang N, et al. BAP1 is altered by copy number loss, mutation, and/or loss of protein expression in more than 70% of malignant peritoneal mesotheliomas. J Thorac Oncol. 2017;12(4):724–33.CrossRefGoogle Scholar
  32. 32.
    Joseph NM, Chen YY, Nasr A, et al. Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X. Mod Pathol. 2017;30(2):246–54.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Dragon J, Thompson J, MacPherson M, et al. Differential susceptibility of human pleural and peritoneal mesothelial cells to asbestos exposure. J Cell Biochem. 2015;116(8):1540–52.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Takeda M, Kasai T, Enomoto Y, et al. Comparison of genomic abnormality in malignant mesothelioma by the site of origin. J Clin Pathol. 2014;67(12):1038–43.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Borczuk AC, Pei J, Taub RN, et al. Genome-wide analysis of abdominal and pleural malignant mesothelioma with DNA arrays reveals both common and distinct regions of copy number alteration. Cancer Biol Ther. 2016;17(3):328–35.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Testa JR, Cheung M, Pei J, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43(10):1022–5.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Carbone M, Ferris LK, Baumann F, et al. BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Transl Med. 2012;10:179.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Baumann F, Flores E, Napolitano A, et al. Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis. 2015;36(1):76–81.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Betti M, Aspesi A, Ferrante D, et al. Sensitivity to asbestos is increased in patients with mesothelioma and pathogenic germline variants in BAP1 or other DNA repair genes. Genes Chromosomes Cancer. 2018;57(11):573–83.CrossRefGoogle Scholar
  40. 40.
    Ceelen WP, Van Dalen T, Van Bockstal M, et al. Malignant peritoneal mesothelioma in a patient with Li-Fraumeni syndrome. J Clin Oncol. 2011;29(17):e503–5.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hung YP, Dong F, Watkins JC, et al. Identification of ALK rearrangements in malignant peritoneal mesothelioma. JAMA Oncol. 2018;4(2):235–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wagner JC, Sleggs CA, Marchand P. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br J Ind Med. 1960;17:260–71.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Talcott JA, Thurber WA, Kantor AF, et al. Asbestos associated diseases in a cohort of cigarette-filter workers. N Engl J Med. 1989;321:1220–3.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Thomas HF, Benjamin IT, Elwood PC, et al. Further follow-up study of workers from an asbestos cement factory. Br J Ind Med. 1982;39:273–6.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Acheson ED, Gardner MJ, Pippard EC, Grime LP. Mortality of two groups of women who manufactured gas masks from chrysotile and crocidolite asbestos: a 40-year follow-up. Br J Ind Med. 1982;39:344–8.PubMedPubMedCentralGoogle Scholar
  46. 46.
    McDonald AD, Case BW, Churg A, Dufresne A, Gibbs GW, Sebastien P, McDonald JC. Mesothelioma in Quebec chrysotile miners and millers: epidemiology and aetiology. Ann Occup Hyg. 1997;41:707–19.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Garabrant DH, Alexander DD, Miller PE, et al. Mesothelioma among Motor Vehicle Mechanics: an updated review and meta-analysis. Ann Occup Hyg. 2016;60(1):8–26.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Pierce JS, Ruestow PS, Finley BL. An updated evaluation of reported no-observed adverse effect levels for chrysotile asbestos for lung cancer and mesothelioma. Crit Rev Toxicol. 2016;46(7):56186.CrossRefGoogle Scholar
  49. 49.
    Smith AH, Wright CC. Chrysotile asbestos is the main cause of pleural mesothelioma. Am J Ind Med. 1996;30(3):252–66.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    McDonald AD, McDonald JC. Mesothelioma after crocidolite exposure during gas mask manufacture. Environ Res. 1978;17:340–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Jones JSP, Gibbs AR, McDonald JC, et al. Mesothelioma following exposure to crocidolite (blue asbestos). A fifty-year follow-up study. In: Second international congress on lung cancer. 1996. p. 407–11.Google Scholar
  52. 52.
    Finkelstein MM. Mortality among employees of an Ontario factory manufacturing insulation materials from amosite asbestos. Am J Ind Med. 1989;15:477–81.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Jarvholm B, Sanden A. Lung cancer and mesothelioma in the pleura and peritoneum among Swedish insulation workers. Occup Environ Med. 1998;55:766–70.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Yarborough CM. Chrysotile as a cause of mesothelioma: an assessment based on epidemiology. Crit Rev Toxicol. 2006;36:165–87.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Gao Z, Hiroshima K, Wu X, et al. Asbestos textile production linked to malignant peritoneal and pleural mesothelioma in women: analysis of 28 cases in Southeast China. Am J Ind Med. 2015;58(10):104.CrossRefGoogle Scholar
  56. 56.
    Mao W, Zhang X, Guo Z. Association of asbestos exposure with malignant mesothelioma incidence in Eastern China. JAMA Oncol Lett. 2017;3(4):562–4.CrossRefGoogle Scholar
  57. 57.
    Hodgson JT, Darnton A. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. Ann Occup Hyg. 2000;44(8):565–601.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hodgson JT, Darnton A, et al. The expected burden of mesothelioma mortality in Great Britain from 2002–2050. Br J Cancer. 2005;92(3):587–93.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Berman DW, Crump KS. Technical support document for a protocol to assess asbestos-related risk. Final Draft, Prepared for Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency; Oct 2003.Google Scholar
  60. 60.
    Berman DW, Crump KS. Update of potency factors for asbestos-related lung cancer and mesothelioma. Crit Rev Toxicol. 2008;38:1–47.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Berman DW, Crump KS. A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type. Crit Rev Toxicol. 2008;38:49–73.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Berman DW. Apples to apples: the origin and magnitude of differences in asbestos cancer risk estimates derived using varying protocols. Risk Anal. 2010;31:1539–6924.Google Scholar
  63. 63.
    Meurman LO, Pukkala E, Hakama M. Incidence of cancer among anthophyllite asbestos miners in Finland. Occup Environ Med. 1994;51:421–5.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Nynäs P, Pukkala E, Vainio H, et al. Cancer incidence in asbestos-exposed workers: an update on four Finnish cohorts. Saf Health Work. 2017;8(2):169–74.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Gaffney SH, Grespin M, Garnick L, et al. Anthophyllite asbestos: state of the science review. J Appl Toxicol. 2017;37(1):38–49.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Finley BL, Pierce JS, Phelka AD, et al. Evaluation of tremolite asbestos exposures associated with the use of commercial products. Crit Rev Toxicol. 2012;42(2):119–46.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Stanton MF, Wrench C. Mechanisms of mesothelioma induction with asbestos and fibreglass. J Natl Cancer Inst. 1972;48:797.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E, Smith A. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst. 1981;67:965–75.Google Scholar
  69. 69.
    Pott F, Huth F, Fredericks K. Tumorogenic effect of fibrous dust in experimental animals. Environ Health Perspect. 1974;9:313–5.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Davis JMG, Jones AD. Comparisons of the pathogenicity of long and short fibres of chrysotile asbestos in rats. Br J Exp Pathol. 1988;69:717–37.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Platek F, et al. Chronic inhalation of short asbestos fibres. Fundam Appl Toxicol. 1985;5:327–40.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Bernstein DM, et al. Comparison of Calidria chrysotile asbestos to pure tremolite: final results of the inhalation biopersistence and histopathology examination following short-term exposure. Inhal Toxicol. 2005;17(9):427–49.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Bernstein DM, Rogers RA, Sepulveda R, et al. Quantification of the pathological response and fate in the lung and pleura of chrysotile in combination with fine particles compared to amosite-asbestos following short-term inhalation exposure. Inhal Toxicol. 2011;23(7):372–91.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Higgins ITT, Glassman JH, Oh MS, et al. Mortality of reserve mining company employees in relation to taconite dust exposure. Am J Epidemiol. 1983;118(5):710–9.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Lambert CS, Alexander BH, Ramachandran G, et al. A case-control study of mesothelioma in Minnesota iron ore (taconite) miners. Occup Environ Med. 2016;73(2):103–9.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    McDonald JC, Gibbs GW, Liddell DK, et al. Mortality after long exposure to cummingtonite-grunerite. Am Rev Respir Dis. 1978;118:271–7.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Rubino G, Scansetti G, Piolatto G, Romano CA. Mortality study of talc miners and millers. J Occup Med. 1976;18(3):186–93.CrossRefGoogle Scholar
  78. 78.
    Rubino G, Scansetti G, Piolatto G, Gay G. Mortality and morbidity among talc miners and millers in Italy. In: Lemen R, Dement J, editors. Dusts and disease. Park Forest South: Pathotox Publishers; 1979. p. 357–63.Google Scholar
  79. 79.
    Coggiola M, Bosio D, Pira E, et al. An update of a mortality study of talc miners and millers in Italy. Am J Ind Med. 2003;44:63–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Pira E, Coggiola M, Ciocan C, et al. Mortality of talc miners and millers from Val Chisone, Northern Italy: an updated cohort study. J Occup Environ Med. 2017;59(7):659–64.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Wergeland E, Andersen A, Baerheim A. Morbidity and mortality in talc-exposed workers. Am J Ind Med. 1990;17:505–13.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Wergeland E, Gjertsen F, Vos L, Grimsrud T. Cause-specific mortality and cancer morbidity in 390 male workers exposed to high purity talc, a six-decade follow-up. Am J Ind Med. 2017;60:821–30.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wild P, Leodolter K, Refregier M, Schmidt H, Zidek T, Haidinger G. A cohort mortality and nested case-control study of French and Austrian talc workers. Occup Environ Med. 2002;59:98–105.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Selevan S, Dement J, Wagoner J, Froines J. Mortality patterns among miners and millers of non-asbestiform talc: preliminary report. In: Lemen R, Dement J, editors. Dusts and disease. Park Forest South: Pathotox Publishers; 1979. p. 379–88.Google Scholar
  85. 85.
    Report of Expert Panel on Health Effects of Asbestos and Synthetic Vitreous Fibres: the influence of fibre length. Agency for toxic substances and disease registry. Atlanta; 2003.Google Scholar
  86. 86.
    McDonald JC, et al. Mesothelioma and asbestos fibre type. Evidence from lung tissue analyses. Cancer. 1989;63(8):1544–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Rogers A, Leigh J, Berry G, Ferguson DA, Mulder HB, Ackad M. Relationship between lung asbestos fibre type and concentration and relative risk of mesothelioma. Cancer. 1991;67:1912–20.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Suzuki Y, Yuen SR. Asbestos tissue burden study on human malignant mesothelioma. Ind Health. 2001;39:150–60.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Suzuki Y, Yuen SR. Asbestos fibres continuing to the induction of human malignant mesothelioma. Ann N Y Acad Sci. 2002;982:160–76.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Chiappino G. Mesotelioma: Ruyolo Delle Fibre Ultrafini Aire Conseguenti Riflessi. In: Campo Preventivo Aire Medico-Legale. Med Lab. 2005;96:3–23.Google Scholar
  91. 91.
    Dodson RF, O’Sullivan MF, Huang J, et al. Asbestos in extra-pulmonary sites—omentum and mesentery. Chest. 2000;117:486–93.PubMedCrossRefGoogle Scholar
  92. 92.
    Boutin C, Dumortier P, Rey F, et al. Black spots concentration oncogenic asbestos fibres in the parietal pleura. Thoracoscopic and mineralogic study. Am J Respir Crit Care Med. 1996;153:444–9.PubMedCrossRefGoogle Scholar
  93. 93.
    La Vecchia C, Boffetta P. Role of stopping exposure and recent exposure to asbestos in the risk of mesothelioma. Eur J Cancer Prev. 2012;21(3):227–30.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Roach HD, Davies GJ, Attanoos R, et al. Asbestos: when the dust settles—an imaging review of asbestos related disease. Radiographics. 2002;22:S167–84.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    De Vuyst P, Karjalainen A, Dumortier P, et al. Guidelines for mineral fibre analysis in biological samples: report of the ERS Working Group. Eur Respir J. 1998;11:1416–26.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Holmes S. Developments in dust sampling and counting techniques in the asbestos industry. Ann N Y Acad Sci. 1965;132:288–97.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    The Asbestos International Association. Reference method for the determination of airborne asbestos fibre concentrations at workplaces by light microscopy (membrane filter method). London: Asbestos International Association; 1979.Google Scholar
  98. 98.
    Walton WH. The natures hazards and assessment of occupational exposure to airborne asbestos dust: a review. Ann Occup Hyg. 1982;25:117–247.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Husain AN, Colby T, Ordonez N, et al. Guidelines for pathologic diagnosis of malignant mesothelioma: 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2018;142(1):89–108.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Attanoos RL, Gibbs AR. Pseudomesotheliomatous carcinomas of the pleura – a 10-year analysis of cases from the Environmental Lung Disease Research Group, Cardiff. Histopathology. 2003;43(5):444–52.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Roggli VL, Gibbs AR, Attanoos RL, et al. Pathology of Asbestosis – an update of the diagnostic criteria. Report of the Asbestosis Committee of the College of American Pathologists and Pulmonary Pathology Society. Arch Pathol Lab Med. 2010;134:462–80.Google Scholar
  102. 102.
    Craighead JE, Gibbs AR, Pooley FD. Benign pleural and parenchymal disease. In: Graighead JC, Gibbs AR, editors. Asbestos and its diseases. Oxford: Oxford University Press; 2008. p. 139–171. Chapter 6.Google Scholar
  103. 103.
    In: Pathology of Asbestos-Associated Diseases. Oury TD, Sporn TA, Roggli VL Eds. 2014 Publisher Springer Chapter 3 Roggli VL: Asbestos Bodies and Non-Asbestos Ferruginous Bodies pp. 25–51.Google Scholar
  104. 104.
    Gibbs AR, Pooley FD. Role of asbestos and other fibres in the development of diffuse malignant mesothelioma. Thorax. 1990;45:649–54.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Pooley FD, Ranson DL. Comparison of the results of asbestos fibre dust counts in lung tissue obtained by analytical electron microscopy and light microscopy. J Clin Pathol. 1986;39:313–7.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Tuomi T. Fibrous minerals in the lungs of mesothelioma patients; comparison between data on SEM, TEM and personal interview information. Am J Ind Med. 1992;21:155–62.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Attanoos RL, Churg A, Galateau-Salle F, Gibbs AR, Roggli VL. Malignant Mesothelioma and Its Non-Asbestos Causes. Arch Pathol Lab Med. 2018;142(6):753–60.CrossRefGoogle Scholar
  108. 108.
    Carbone M, Adusumilli PS, Alexander HR Jr, et al. Mesothelioma: Scientific clues for prevention, diagnosis, and therapy. CA Cancer J Clin. 2019;69(5):402–29.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Cellular PathologyUniversity Hospital of Wales, Heath Park, and School of Medicine, Cardiff UniversityCardiffUK

Personalised recommendations