Advertisement

Lung Cancer: Genetic Susceptibility

  • Ari P. HirvonenEmail author
Chapter
  • 51 Downloads

Abstract

Lung cancer is one of the leading causes of cancer death all over the world. Although it is known that genetic and epigenetic susceptibility factors play a role in determining individual risk of developing lung cancer, the role of genetically determined host factors in occupational exposure-related lung cancer is poorly explored. Gene variants that might affect susceptibility to lung cancer fall into three categories: rare-risk, moderate-risk, and common low-risk variants. Most of the genetic risk for lung cancer is likely to involve several genes of the last two categories. Such risk variants have mostly been tested on a candidate gene basis. However, during recent years genome-wide association studies have provided an alternative for these studies. This chapter presents these nowadays most commonly used approaches and the main results they have produced regarding the studies on genetic susceptibility factors for lung cancer.

Keywords

Lung cancer Genetic susceptibility Genome-wide association studies Carcinogen-metabolizing genes Work-related lung cancer DNA repair genes Cell-cycle genes 

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J. 2015;65:5–29.CrossRefGoogle Scholar
  2. 2.
    de Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. Transl Lung Cancer Res. 2018;7:220–33.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Spyratos D, Zarogoulidis P, Porpodis K, Tsakiridis K, Machairiotis N, Katsikogiannis N, Katsokogiannis N, Kougioumzi I, Dryllis G, Kallianos A, Rapti A, Li C, Zarogouldis K. Occupational exposure and lung cancer. J Thorac Dis. 2013;5:S440–5.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Malhotra J, Malvezzi M, Negri E, La Vecchia C, Boffetta P. Risk factors for lung cancer worldwide. Eur Respir J. 2016;48:889–902.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith G, Stanley LA, Sim E, Strange R, Wolf CR. Metabolic polymorphisms and cancer susceptibility. Cancer Surv. 1995;25:27–65.PubMedGoogle Scholar
  6. 6.
    Nebert DW, Mckinnon RA, Puga A. Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol. 1996;15:273–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Guengerich FP. Catalytic selectivity of human cytochrome P450 enzymes: relevance to drug metabolism and toxicity. Toxicol Lett. 1994;70:133–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Gonzalez FJ, Aoyama T, Gelboin HV. Activation of promutagens by human cDNA expressed cytochrome P450s. Prog Clin Biol Res. 1990;340B:77–86.PubMedGoogle Scholar
  9. 9.
    Eaton DL, Gallagher EP, Bammler TK, Kunze KL. Role of cytochrome P4501A2 in chemical carcinogenesis: implications for human variability in expression and enzyme activity. Pharmacogenetics. 1995;5:259–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Gonzalez FJ. The CYP2D6 subfamily. In: Ioannides C, editor. Cytochromes P450s: metabolic and toxicologic aspects. Boca Raton: CRC; 1996. p. 183–210.Google Scholar
  11. 11.
    Daly AK, Brockmoller J, Broly F, Eichelbaum M, Evans WE, Gonzalez FJ, Huang J-D, Idle JR, Ingelman-sundberg M, Ishizaki T, Jacqz-Aigrain E, Meyer UA, Nebert DW, Steen VM, Wolf CR, Zanger UM. Nomenclature for human CYP2D6 alleles. Pharmacogenetics. 1996;6:193–201.PubMedCrossRefGoogle Scholar
  12. 12.
    Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Astabrook RW, Gunsalus IC, Nebert DE. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996;6:1–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Rostami-Hodjegan A, Lenard MS, Woods HE, Tucker GT. Meta-analysis of studies of the CYP2D6 polymorphism in relation to lung cancer and Parkinson’s disease. Pharmacogenetics. 1998;8:227–38.PubMedCrossRefGoogle Scholar
  14. 14.
    Agundez JA. Cytochrome P450 gene polymorphism and cancer. Curr Drug Metab. 2004;5:211–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Rojas M, Camus AM, Alexandrov K, Husgafvel-Pursiainen K, Anttila S, Vainio H, Bartsch H. Stereoselective metabolism of (−)-benzoapyrene-7,8-diol by human lung microsomes and peripheral blood lymphocytes: effects of smoking. Carcinogenesis. 1992;13:929–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Shou M, Krausz KW, Gonzalez FJ, Gelboin HV. Metabolic activation of the potent carcinogen dibenzo(a)pyrene by human recombinant cytochromes P450, lung and liver microsomes. Carcinogenesis. 1996;17:2429–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Bartsch H, Rojas M, Alexandrov K, Camus A-M, Castegnaro M, Malaveille C, Anttila S, Hirvonen A, Husgafvel-Pursiainen K, Hietanen E, Vainio H. Metabolic polymorphism affecting DNA binding and excretion of carcinogens in humans. Pharmacogenetics. 1995;5:S84–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Okazaki I, Sugita M, Matsuki H, Billah SM, Watanabe T. Additional candidates to conventional genes susceptible for lung cancer and changing trend in Japan. Oncol Rep. 2010;23:1493–500.PubMedCrossRefGoogle Scholar
  19. 19.
    Hecht SS. Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention. Lancet Oncol. 2002;3:461–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Brockmoeller J, Cascorbi I, Kerb R, Sachse C, Roots I. Polymorphisms in xenobiotic conjugation and disease predisposition. Toxicol Lett. 1998;102–103:173–83.CrossRefGoogle Scholar
  21. 21.
    Vineis P, Veglia F, Benhamou S, Butkiewicz D, Cascorbi I, Clapper ML, Dolzan V, Haugen A, Hirvonen A, Ingelman-Sundberg M, Kihara M, Kiyohara C, Kremers P, Le Marchand L, Ohshima S, Pastorelli R, Rannug A, Romkes M, Schoket B, Shields P, Strange RC, Stucker I, Sugimura H, Garte S, Gaspari L, Taioli E. CYP1A1 T3801 C polymorphism and lung cancer: a pooled analysis of 2,451 cases and 3,358 controls. Int J Cancer. 2003;104:650–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Vineis P, Anttila S, Benhamou S, Spinola M, Hirvonen A, Kiyohara C, Garte SJ, Puntoni R, Rannug A, Strange RC, Taioli E. Evidence of gene-gene interactions in lung carcinogenesis in a large pooled analysis. Carcinogenesis. 2007;28:1902–5.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Houlston RS. CYP1A1 polymorphisms and lung cancer risk: a meta-analysis. Pharmacogenetics. 2000;10:105–14.PubMedCrossRefGoogle Scholar
  24. 24.
    Hung RJ, Boffetta P, Brockmoller J, Butkiewicz D, Cascorbi I, Clapper ML, Garte S, Haugen A, Hirvonen A, Anttila S, Kalina I, Le Marchand L, London SJ, Rannug A, Romkes M, Salagovic J, Schoket B, Gaspari L, Taioli E. CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: a pooled analysis. Carcinogenesis. 2003;24:875–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Vineis P, Veglia F, Anttila S, Benhamou S, Clapper ML, Dolzan V, Ryberg D, Hirvonen A, Kremers P, Le Marchand L, Pastorelli R, Rannug A, Romkes M, Schoket B, Strange RC, Garte S, Taioli E. CYP1A1, GSTM1 and GSTT1 polymorphisms and lung cancer: a pooled analysis of gene-gene interactions. Biomarkers. 2004;9:298–305.PubMedCrossRefGoogle Scholar
  26. 26.
    Le Marchand L, Guo C, Benhamou S, Bouchardy C, Cascorbi I, Clapper ML, Garte S, Haugen A, Ingelman-Sundberg M, Kihara M, Rannug A, Ryberg D, Stücker I, Sugimura H, Taioli E. Pooled analysis of the CYP1A1 exon 7 polymorphism and lung cancer (United States). Cancer Causes Control. 2003;14:339–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Pavanello S, B’chir F, Pulliero A, Saguem S, Ben Fraj R, El Aziz HA, Clonfero E, Mastrangelo G. Interaction between CYP1A2-T2467DELT polymorphism and smoking in adenocarcinoma and squamous cell carcinoma of the lung. Lung Cancer. 2007;57:266–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Singh AP, Pant MC, Ruwali M, Shah PP, Prasad R, Mathur N, Parmar D. Polymorphism in cytochrome P450 1A2 and their interaction with risk factors in determining risk of squamous cell lung carcinoma in men. Cancer Biomark. 2010;8:351–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Roos PH, Bolt HM. Cytochrome P450 interactions in human cancers: new aspects considering CYP1B1. Expert Opin Drug Metab Toxicol. 2005;1:187–202.PubMedCrossRefGoogle Scholar
  30. 30.
    Watanabe J, Shimada T, Gillam EM, Ikuta T, Suemasu K, Higashi Y, Gotoh O, Kawajiri K. Association of CYP1B1 genetic polymorphism with incidence to breast and lung cancer. Pharmacogenetics. 2005;10:25–33.CrossRefGoogle Scholar
  31. 31.
    Liang G, Pu Y, Yin L. Rapid detection of single nucleotide polymorphisms related with lung cancer susceptibility of Chinese population. Cancer Lett. 2005;223:265–74.PubMedCrossRefGoogle Scholar
  32. 32.
    Timofeeva MN, Kropp S, Sauter W, Beckmann L, Rosenberger A, Illig T, Jäger B, Mittelstrass K, Dienemann H, LUCY-Consortium, Bartsch H, Bickeböller H, Chang-Claude JC, Risch A, Wichmann HE. CYP450 polymorphisms as risk factors for early-onset lung cancer: gender-specific differences. Carcinogenesis. 2009;30:1161–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Rotunno M, Yu K, Lubin JH, Consonni D, Pesatori AC, Goldstein AM, Goldin LR, Wacholder S, Welch R, Burdette L, Chanock SJ, Bertazzi PA, Tucker MA, Caporaso NE, Chatterjee N, Bergen AW, Landi MT. Phase I metabolic genes and risk of lung cancer: multiple polymorphisms and mRNA expression. PLoS One. 2009;4:e5652.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Xu W, Zhou Y, Hang X, Shen D. Current evidence on the relationship between CYP1B1 polymorphisms and lung cancer risk: a meta-analysis. Mol Biol Rep. 2012;39:2821–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Di YM, Chow VD, Yang LP, Zhou SF. Structure, function, regulation and polymorphism of human cytochrome P450 2A6. Curr Drug Metab. 2009;10:754–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Fernandez-Salguero P, Gonzalez FJ. The CYP2A gene subfamily: species differences, regulation, catalytic activities and role in chemical carcinogenesis. Pharmacogenetics. 1995;5:S123–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Fernandez-Salguero P, Hoffman SMG, Cholerton S, Mohrenweiser H, Raunio H, Rautio A, Pelkonen O, Huang J, Evans WE, Idle JR, Gonzalez FJ. A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am J Hum Genet. 1995;57:651–60.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Cholerton S, Idle ME, Vas A, Gonzalez FJ, Idle JR. Comparison of a novel thin layer chromatographic-fluorescence detection method with a spectrofluoromethric method for the determination of 7-hydrocoumarin in human urine. J Chromatogr. 1992;575:325–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Tamaki Y, Arai T, Sugimura H, Sasaki T, Honda M, Muroi Y, Matsubara Y, Kanno S, Ishikawa M, Hirasawa N, Hiratsuka M. Association between cancer risk and drug-metabolizing enzyme gene (CYP2A6, CYP2A13, CYP4B1, SULT1A1, GSTM1, and GSTT1) polymorphisms in cases of lung cancer in Japan. Drug Metab Pharmacokinet. 2011;26:516–22.PubMedCrossRefGoogle Scholar
  40. 40.
    Wassenaar CA, Dong Q, Wei Q, Amos CI, Spitz MR, Tyndale RF. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J Natl Cancer Inst. 2011;103:1342–6.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Uematsu F, Kikuchi H, Ohmachi T, Sagami I, Motomiya M, Kamataki T, Komori M, Watanabe M. Two common RFLPs of the human CYP2E1 gene. Nucl Acid Res. 1991;19:2803.CrossRefGoogle Scholar
  42. 42.
    Uematsu F, Kikuchi H, Motomiya M, Abe T, Sagami I, Ohmachi T, Wakui A, Kanamaru R, Watanabe M. Association between restriction fragment length polymorphism of the human cytochrome P450IIE1 gene and susceptibility to lung cancer. Jpn J Cancer Res. 1991;82:254–6.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Uematsu F, Kikuchi H, Abe T, Motomiya M, Ohmachi T, Sagami I, Watanabe M. Msp I polymorphism of the human CYP2E1 gene. Nucl Acids Res. 1991;19:5797.PubMedCrossRefGoogle Scholar
  44. 44.
    Hayashi S, Watanabe J, Kawajiri K. Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J Biochem. 1991;110:559–65.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu Y, Meng XW, Zhou LY, Zhang PY, Sun X, Zhang P. Genetic polymorphism and mRNA levels of cytochrome P450IIE1 and glutathione S-transferase P1 in patients with alcoholic liver disease in different nationalities. Hepatobiliary Pancreat Dis Int. 2009;8:162–7.PubMedGoogle Scholar
  46. 46.
    Uematsu F, Kikuchi H, Motomiya M, Abe T, Ishioka C, Kanamaru R, Sagami I, Watanabe M. Human cytochrome P450IIE1 gene: DraI polymorphism and susceptibility to cancer. Tohoku J Exp Med. 1992;168:113–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Uematsu F, Ikawa S, Sagami I, Kanamaru R, Abe T, Satoh K, Motomiya M, Watanabe M. Restriction fragment length polymorphism of the human CYP2E1 (cytochrome P450IIE1) gene and susceptibility to lung cancer: possible relevance to low smoking exposure. Pharmacogenetics. 1994;4:58–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Hirvonen A, Husgafvel-Pursiainen K, Anttila S, Karjalainen A, Vainio H. The human CYP2E1 gene and lung cancer: DraI and RsaI restriction fragment length polymorphisms in a Finnish study population. Carcinogenesis. 1993;14:85–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Rannug A, Alexandrie AK, Persson I, Ingelman-Sundberg M. Genetic polymorphism of cytochromes P450 1A1, 2D6 and 2E1: regulation and toxicological significance. J Occup Environ Med. 1995;37:25–36.PubMedCrossRefGoogle Scholar
  50. 50.
    Wang Y, Yang H, Li L, Wang H, Zhang C, Yin G, Zhu B. Association between CYP2E1 genetic polymorphisms and lung cancer risk: a meta-analysis. Eur J Cancer. 2010;46:758–64.PubMedCrossRefGoogle Scholar
  51. 51.
    Oesch F. Mammalian epoxide hydrolases: inducible enzymes catalyzing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica. 1973;3:305–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Oesch F, Glatt H, Schimassmann H. The apparent ubiquity of epoxide hydrolase in rat organs. Biochem Pharmacol. 1977;26:603–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Seidegård J, Ekström G. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect. 1997;105:791–9.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Omiecinski CJ, Aicher L, Holubkov R, Checkoway H. Human peripheral lymphocytes as indicators of microsomal epoxide hydrolase activity in liver and lung. Pharmacogenetics. 1993;3:150–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Etter H, Richter C, Ohta Y, Winterhalter KH, Sasabe H, Kawato S. Rotation and interaction with epoxide hydrolase of P-450 in proteoliposomes. J Biol Chem. 1991;266:18600–5.PubMedGoogle Scholar
  56. 56.
    Sims P, Grover PL, Swaisland A, Pal K, Hewer A. Metabolic activation of benzo(a)pyrene proceeds by a diol epoxide. Nature. 1974;252:326–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Hasset C, Robinson KB, Beck NB, Omiecinski CJ. The human microsomal epoxide hydrolase gene (EPHX1): complete nucleotide sequence and structural characterization. Genomics. 1994;23:433–42.CrossRefGoogle Scholar
  58. 58.
    Hasset C, Aicher L, Sidhu JS, Omiecinski CJ. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 1994;3:421–8.CrossRefGoogle Scholar
  59. 59.
    Raaka S, Hasset C, Omiecinski CJ. Human microsomal epoxide hydrolase: 5′-flanking region genetic polymorphism. Carcinogenesis. 1998;19:387–93.PubMedCrossRefGoogle Scholar
  60. 60.
    Kiyohara C, Yoshimasu K, Takayama K, Nakanishi Y. EPHX1 polymorphisms and the risk of lung cancer: a HuGE review. Epidemiology. 2006;17:89–99.PubMedCrossRefGoogle Scholar
  61. 61.
    Li X, Hu Z, Qu X, Zhu J, Li L, Ring BZ, Su L. Putative EPHX1 enzyme activity is related with risk of lung and upper aerodigestive tract cancers: a comprehensive meta-analysis. PLoS One. 2011;6:e14749.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30:445–600.PubMedCrossRefGoogle Scholar
  63. 63.
    Coles B, Ketterer B. The role of glutathione and glutathione transferases in chemical carcinogenesis. Crit Rev Biochem Mol Biol. 1990;25:47–70.PubMedCrossRefGoogle Scholar
  64. 64.
    Seidegård J, Vorachek WR, Pero RW, Pearson WR. Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci. 1988;85:7293–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Widersten M, Pearson WR, Engstrom A, Mannervik B. Heterologous expression of the allelic variant mu-class glutathione transferases mu and psi. Biochem J. 1991;276:519–24.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Gemignani F, Landi S, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout V, Bencko V, Gaborieau V, Gioia-Patricola L, Bellini I, Barale R, Canzian F, Hall J, Boffetta P, Hung RJ, Brennan P. Development of lung cancer before the age of 50: the role of xenobiotic metabolizing genes. Carcinogenesis. 2007;28:1287–93.PubMedCrossRefGoogle Scholar
  67. 67.
    Carlsten C, Sagoo GS, Frodsham AJ, Burke W, Higgins JP. Glutathione S-transferase M1 (GSTM1) polymorphisms and lung cancer: a literature-based systematic HuGE review and meta-analysis. Am J Epidemiol. 2008;167:759–74.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee KM, Kang D, Clapper ML, Ingelman-Sundberg M, Ono-Kihara M, Kiyohara C, Min S, Lan Q, Le Marchand L, Lin P, Lung ML, Pinarbasi H, Pisani P, Srivatanakul P, Seow A, Sugimura H, Tokudome S, Yokota J, Taioli E. CYP1A1, GSTM1, and GSTT1 polymorphisms, smoking, and lung cancer risk in a pooled analysis among Asian populations. Cancer Epidemiol Biomark Prev. 2008;17:1120–6.CrossRefGoogle Scholar
  69. 69.
    Langevin SM, Ioannidis JP, Vineis P, Taioli E. Genetic Susceptibility to Environmental Carcinogens group (GSEC). Assessment of cumulative evidence for the association between glutathione S-transferase polymorphisms and lung cancer: application of the Venice interim guidelines. Pharmacogenet Genomics. 2010;20:586–97.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    McWilliams JE, Sanderson BJ, Harris EL, Richert-Boe KE, Henner WD. Glutathione S-transferase M1 (GSTM1) deficiency and lung cancer risk. Cancer Epidemiol Biomark Prev. 1995;4:589–94.Google Scholar
  71. 71.
    Inskip A, Elexpuru-Camiruaga J, Buxton N, Dias PS, Macintosh J, Campbell D, Jones PW, Yengi L, Talbot JA, Strange RC, Fryer AA. Identification of polymorphism at the glutathione S-transferase, GSTM3 locus: evidence for linkage with GSTM1∗A. Biochem J. 1995;312:713–6.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Anttila S, Hirvonen A, Vainio H, Husgafvel-Pursiainen K, Hayes JD, Ketterer B. Immunohistochemical localization of glutathione S-transferases in human lung. Cancer Res. 1993;53:5643–8.PubMedGoogle Scholar
  73. 73.
    Anttila S, Luostarinen L, Hirvonen A, Elovaara E, Karjalainen A, Nurminen T, Hayes JD, Vainio H, Ketterer B. Pulmonary expression of glutathione S-transferase M3 in lung cancer patients: association with GSTM1 polymorphism, smoking, and asbestos exposure. Cancer Res. 1995;55:3305–9.PubMedGoogle Scholar
  74. 74.
    Yengi L, Inskip A, Gilford J, Alldersea J, Bailey L, Smith A, Lear JT, Heagerty AH, Bowers B, Hand P, Hayes JD, Jones PW, Strange RC, Fryer AA. Polymorphism at the glutathione S-transferase locus GSTM3: interactions with cytochrome P450 and glutathione S-transferase genotypes as risk factors for multiple cutaneous basal cell carcinoma. Cancer Res. 1996;56:1974–7.PubMedGoogle Scholar
  75. 75.
    Matthias C, Bockműhl U, Jahnke V, Jones PW, Hayes JD, Alldersea J, Gilford J, Bailey L, Bath J, Worrall SF, Hand P, Fryer AA, Strange R. Polymorphism in cytochrome P450 CYP2D6, CYP1A1, CYP2E1 and glutathione S-transferase, GSTM1, GSTM3, GSTT1 and susceptibility to tobacco-related cancers: studies in upper aerodigestive tract cancers. Pharmacogenetics. 1998;8:91–100.PubMedGoogle Scholar
  76. 76.
    Jourenkova-Mirnova N, Wikman H, Bouchardy C, Voho A, Dayer P, Benhamou S, Hirvonen A. Role of glutathione S-transferase GSTM1, GSTM3, GSTP1, and GSTT1 genotypes in modulating susceptibility to smoking related lung cancer. Pharmacogenetics. 1998;8:495–502.CrossRefGoogle Scholar
  77. 77.
    Ali-Osman F, Akande N, Mao J. Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J Biol Chem. 1997;272:10004–12.PubMedCrossRefGoogle Scholar
  78. 78.
    Zimniak P, Nanduri B, Pilula S, Bandorowicz-Pikula J, Singhal S, Srivastava SK, Awasthi S, Awasrhi JC. Naturally occurring human glutathione S-transferase GSTP1.1 isoforms with isoleucine and valine at position 104 differ in enzymatic properties. Eur J Biochem. 1994;224:893–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Ryberg D, Skaug V, Hewer A, Phillips DH, Harries LW, Wolf CR, Øgreid D, Ulvik A, Vu P, Haugen A. Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis. 1997;18:1285–9.PubMedCrossRefGoogle Scholar
  80. 80.
    XM L, Yu XW, Yuan Y, Pu MZ, Zhang HX, Wang KJ, Han XD. Glutathione S-transferase P1, gene-gene interaction, and lung cancer susceptibility in the Chinese population: an updated meta-analysis and review. J Cancer Res Ther. 2015;11:565–70.CrossRefGoogle Scholar
  81. 81.
    Harris MJ, Coggan M, Langton L, Wilson SR, Board PG. Polymorphism of the Pi class glutathione S-transferase in normal populations and cancer patients. Pharmacogenetics. 1998;8:27–31.PubMedCrossRefGoogle Scholar
  82. 82.
    Cote ML, Chen W, Smith DW, Benhamou S, Bouchardy C, Butkiewicz D, Fong KM, Gené M, Hirvonen A, Kiyohara C, Larsen JE, Lin P, Raaschou-Nielsen O, Povey AC, Reszka E, Risch A, Schneider J, Schwartz AG, Sorensen M, To Figueras J, Tokudome S, Pu Y, Yang P, Wenzlaff AS, Wikman H, Taioli E. Meta- and pooled analysis of GSTP1 polymorphism and lung cancer: a HuGE-GSEC review. Am J Epidemiol. 2009;169:802–14.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ye Z, Song H, Higgins JP, Pharoah P, Danesh J. Five glutathione s-transferase gene variants in 23,452 cases of lung cancer and 30,397 controls: meta-analysis of 130 studies. PLoS Med. 2006;3:e91.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylor JB. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J. 1994;300:271–6.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Schröder KR, Hallier E, Peter H, Bolt HM. Dissociation of a new glutathione S-transferase activity in human erythrocytes. Biochem Pharmacol. 1992;43:1671–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Church SL. Manganese superoxide dismutase: nucleotide and deduced amino acid sequence of a cDNA encoding a new human transcript. Biochim Biophys Acta. 1990;1087:250–2.PubMedCrossRefGoogle Scholar
  87. 87.
    Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS, Trent JM. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci. 1993;90:3113–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y. Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun. 1996;226:561–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Rosenblum JS, Gilula NB, Lerner RA. On signal sequence polymorphisms and diseases of distribution. Proc Natl Acad Sci. 1996;93:4471–3.PubMedCrossRefGoogle Scholar
  90. 90.
    Sutton A, Khoury H, Prip-Buus C, Cepanec C, Pessayre D, Degoul F. The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics. 2003;13:145–57.PubMedCrossRefGoogle Scholar
  91. 91.
    Schmekel B, Venge P. The distribution of myeloperoxidase, eosinophil cationic protein, albumin and urea in sequential bronchoalveolar lavage. Eur Respir J. 1991;4:517–23.PubMedGoogle Scholar
  92. 92.
    Schmekel B, Karlsson SE, Linden M, Sundström C, Tegner H, Venge P. Myeloperoxidase in human lung lavage. I. A marker of local neutrophil activity. Inflammation. 1990;14:447–54.PubMedCrossRefGoogle Scholar
  93. 93.
    Piedrafita FJ, Molander RB, Vansant G, Orlova EA, Pfahl M, Reynolds WF. An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem. 1996;271:14412–20.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang LI, Neuberg D, Christiani DC. Asbestos exposure, manganese superoxide dismutase (MnSOD) genotype, and lung cancer risk. J Occup Environ Med. 2004;46:556–64.PubMedCrossRefGoogle Scholar
  95. 95.
    Wang LI, Miller DP, Sai Y, Liu G, Su L, Wain JC, Lynch TJ, Christiani DC. Manganese superoxide dismutase alanine-to-valine polymorphism at codon 16 and lung cancer risk. J Natl Cancer Inst. 2001;93:1818–21.PubMedCrossRefGoogle Scholar
  96. 96.
    Lin P, Hsueh YM, Ko JL, Liang YF, Tsai KJ, Chen CY. Analysis of NQO1, GSTP1, and MnSOD genetic polymorphisms on lung cancer risk in Taiwan. Lung Cancer. 2003;40:123–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Zejnilovic J, Akev N, Yilmar H, Isbir T. Association between manganese superoxide dismutase polymorphism and risk of lung cancer. Cancer Genet Cytogenet. 2009;189:1–4.PubMedCrossRefGoogle Scholar
  98. 98.
    Schabath MB, Spitz MR, Delclos GL, Gunn GB, Whitehead LW, Wu X. Association between asbestos exposure, cigarette smoking, myeloperoxidase (MPO) genotypes, and lung cancer risk. Am J Ind Med. 2002;42:29–37.PubMedCrossRefGoogle Scholar
  99. 99.
    Yang WJ, Wang MY, Pan FZ, Shi C, Cen H. Association between MPO-463G > A polymorphism and cancer risk: evidence from 60 case-control studies. World J Surg Oncol. 2017;15:144.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Hein DW. N-acetyltransferase SNPs: emerging concepts serve as a paradigm for understanding complexities of personalized medicine. Expert Opin Drug Metab Toxicol. 2009;5:353–66.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Husain A, Zhang X, Doll MA, States JC, Barker DF, Hein DW. Functional analysis of the human N-acetyltransferase 1 major promoter: quantitation of tissue expression and identification of critical sequence elements. Drug Metab Dispos. 2007;35:1649–56.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sim E, Payton M, Noble M, Minchin R. An update on genetic, structural and functional studies of arylamine N-acetyltransferases in eucaryotes and procaryotes. Hum Mol Genet. 2000;9:2435–41.PubMedCrossRefGoogle Scholar
  103. 103.
    Smelt VA, Upton A, Adjaye J, Payton MA, Boukouvala S, Johnson N, Mardon HJ, Sim E. Expression of arylamine N-acetyltransferases in pre-term placentas and in human pre-implantation embryos. Hum Mol Genet. 2000;9:1101–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Sim E, Lack N, Wang CJ, Long H, Westwood I, Fullam E, Kawamura A. Arylamine N-acetyltransferases: structural and functional implications of polymorphisms. Toxicology. 2008;254:170–83.PubMedCrossRefGoogle Scholar
  105. 105.
    Vatsis KP, Weber WW, Bell DA, Dupret J-M, Evans DAP, Grant DM, Hein DW, Lin HJ, Meyer UA, Relling MV, Sim E, Suzuki T, Yamazoe Y. Nomenclature for N-acetyltransferases. Pharmacogenetics. 1995;5:1–17.PubMedCrossRefGoogle Scholar
  106. 106.
    Hein DW, Boukouvala S, Grant DM, Minchin RF, Sim E. Changes in consensus arylamine N-acetyltransferase gene nomenclature. Pharmacogenet Genomics. 2008;18:367–8.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Butcher NJ, Tiang J, Minchin RF. Regulation of arylamine N-acetyltransferases. Curr Drug Metab. 2008;9:498–504.PubMedCrossRefGoogle Scholar
  108. 108.
    Evans DA. N-acetyltransferase. In: Kalow W, editor. Pharmacogenetics of drug metabolism. New York: Pergamon Press; 1992. p. 95–178.Google Scholar
  109. 109.
    Hein DW, Doll MA, Rustan TD, Gray K, Feng Y, Ferguson RJ, Grant DM. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. Carcinogenesis. 1993;14:1633–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Chen B, Zhang WX, Cai WM. The influence of various genotypes on the metabolic activity of NAT2 in a Chinese population. Eur J Clin Pharmacol. 2006;62:355–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Ma JJ, Liu CG, Li JH, Cao XM, Sun SL, Yao X. Effects of NAT2 polymorphism on SASP pharmacokinetics in Chinese population. Clin Chim Acta. 2009;407:30–5.PubMedCrossRefGoogle Scholar
  112. 112.
    Doll MA, Zang Y, Moeller T, Hein DW. Codominant expression of N-acetylation and O-acetylation activities catalyzed by N-acetyltransferase 2 in human hepatocytes. J Pharmacol Exp Ther. 2010;334:540–4.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Walraven JM, Zang Y, Trent JO, Hein DW. Structure/function evaluations of single nucleotide polymorphisms in human N-acetyltransferase 2. Curr Drug Metab. 2008;9:471–86.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Hein DW. N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene. 2006;25:1649–58.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Walraven JM, Trent JO, Hein DW. Structure-function analyses of single nucleotide polymorphisms in human N-acetyltransferase 1. Drug Metab Rev. 2008;40:169–84.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Zhu Y, States C, Wang Y, Hein DW. Functional effects of genetic polymorphisms in the N-acetyltransferase 1 coding and 3′ untranslated regions. Birth Defects Res A Clin Mol Teratol. 2011;91:77–84.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Zhu Y, Hein DW. Functional effects of single nucleotide polymorphisms in the coding region of human N-acetyltransferase 1. Pharmacogenomics J. 2008;8:339–48.PubMedCrossRefGoogle Scholar
  118. 118.
    Hirvonen A. Polymorphic NATs and cancer proneness. In: Boffetta P, Caporaso N, Cuzick J, Lang M, Vineis P, editors. Metabolic polymorphisms and cancer. Lyon: IARC Scientific Publications; 1998.Google Scholar
  119. 119.
    Martínez C, Agúndez JAG, Olivera M, Martín R, Ladero JM, Benítez J. Lung cancer and mutations at the polymorphic NAT2 gene locus. Pharmacogenetics. 1995;5:207–14.PubMedCrossRefGoogle Scholar
  120. 120.
    Cascorbi I, Brockmöller J, Mrozikiewicz PM, Bauer S, Loddenkemper R, Roots I. Homozygous rapid arylamine N-acetyltransferase (NAT2) genotype as a susceptibility factor for lung cancer. Cancer Res. 1996;56:3961–6.PubMedGoogle Scholar
  121. 121.
    McKay JD, Hashibe M, Hung RJ, Wakefield J, Gaborieau V, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout V, Bencko V, Chabrier A, Hall J, Boffetta P, Canzian F, Brennan P. Sequence variants of NAT1 and NAT2 and other xenometabolic genes and risk of lung and aerodigestive tract cancers in Central Europe. Cancer Epidemiol Biomark Prev. 2008;17:141–7.CrossRefGoogle Scholar
  122. 122.
    Bouchardy C, Mitrunen K, Wikman H, Husgafvel-Pursiainen K, Dayer P, Benhamou S, Hirvonen A. N-acetyltransferase NAT1 and NAT2 genotypes and lung cancer risk. Pharmacogenetics. 1998;8:291–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland LB, Canzian F, Haugen A. A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers. Carcinogenesis. 2008;29:1164–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74.PubMedCrossRefGoogle Scholar
  125. 125.
    Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;423:316–23.CrossRefGoogle Scholar
  126. 126.
    Wood RD, Mitchell M, Lindahl T. Human DNA repair genes. Mutat Res. 2005;577:275–83.PubMedCrossRefGoogle Scholar
  127. 127.
    Lavin MF, Kozlov S. ATM activation and DNA damage response. Cell Cycle. 2007;6:931–42.PubMedCrossRefGoogle Scholar
  128. 128.
    Kastan MB, Derheimer DA. Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett. 2010;584:3675–81.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Shen L, Yin Z-H, Wan Y, Zhang Y, Li K, Zhou B-S. Association between ATM polymorphisms and cancer risk: a meta-analysis. Mol Biol Rep. 2012;39:5719–25.PubMedCrossRefGoogle Scholar
  130. 130.
    Zhao L, Gu A, Guixiang J, Zhou P, Zhao P, Lu A. The association between ATM IVS 22–77 T>C and cancer risk: a meta-analysis. PLoS One. 2012;6:e29479.CrossRefGoogle Scholar
  131. 131.
    Barzilay G, Hickson ID. Structure and function of apurinic/apyrimidinic endonucleases. BioEssays. 1995;17:713–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Tell G, Quadrifoglio F, Tribelli C, Kelley MR. Many functions of APE1/ref-1: not only DNA repair enzyme. Antioxid Redox Signal. 2009;11:601–20.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Xi T, Jones IM, Mohrenweiser HW. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. Genomics. 2004;83:970–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Zhou B, Shan H, Su Y, Xia K, Shao X, Mao W, Shao Q. The association of APE1–656T>G and 1349T>G polymorphism and cancer risk: a meta-analysis based on 37 case-control studies. BMC Cancer. 2011;11:521.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Ji Y-N, Zhan P, Wang J, Qiu L-X, Yu L-K. APE1 Asp148Glu gene polymorphism and lung cancer risk: a meta-analysis. Mol Biol Rep. 2011;38:4537–43.PubMedCrossRefGoogle Scholar
  136. 136.
    Abdel-Rahman MH, Pilarski R, Cebulla CM, Massengill JB, Christopher BN, Boru G, Hovland P, Davidorf FH. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet. 2011;48:856–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Lin M, Zhang L, Hildebrandt MAT, Huang M, Wu X, Ye Y. Common, germline genetic variations in the novel tumor suppressor BAP1 and risk of developing different types of cancer. Oncotarget. 2017;8:74936–46.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Ma H, Xu L, Yan J, Shao M, Hu Wang F, Wang Y, Yuan W, Qian J, Wang Y, Xun P, Liu H, Chen W, Yang L, Jin G, Huo X, Chen F, Shugart YY, Jin L, Wei Q, Wu T, Shen H, Huang W, Lu D. Tagging single nucleotide polymorphisms in excision repair cross-complementing group 1 (ERCC1) and risk of primary lung cancer in a Chinese population. Pharmacogenet Genomics. 2007;17:417–23.PubMedCrossRefGoogle Scholar
  139. 139.
    Yu JJ, Lee KB, Mu C, Li Q, Abernathy TV, Bostick-Bruton F, Reed E. Comparison of two human ovarian carcinoma cell lines (A2780/CP70 and MCAS) that are equally resistant to platinum, but differ at codon 118 of the ERCC1 gene. Int J Oncol. 2000;16:555–60.PubMedGoogle Scholar
  140. 140.
    Duell EJ, Wiencke JK, Cheng TJ, Varkonyi A, Zuo ZF, Ashok TD, Mark EJ, Wain JC, Christiani DC, Kelsey KT. Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis. 2000;21:965–71.PubMedCrossRefGoogle Scholar
  141. 141.
    Lunn RM, Helzlsouer KJ, Parshad R, Umbach DM, Harris EL, Sanford KK, Bell DA. XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis. 2000;21:551–5.PubMedCrossRefGoogle Scholar
  142. 142.
    Zhang L, Wang J, Xu L, Zhou J, Guan X, Jiang F, Wu Y, Fan W. Nucleotide excision repair gene ERCC1 polymorphisms contribute to cancer susceptibility: a meta-analysis. Mutagenesis. 2011;27:67–76.PubMedCrossRefGoogle Scholar
  143. 143.
    Kiyohara C, Yoshimasu K. Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis. Int J Med Sci. 2007;4:59–71.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Hung RJ, Christiani DC, Risch A, Popanda O, Haugen A, Zienolddiny S, Benhamou S, Bouchardy C, Lan Q, Spitz MR, Wichmann HE, LeMarchand L, Vineis P, Matullo G, Kiyohara C, Zhang ZF, Pezeshki B, Harris C, Mechanic L, Seow A, Ng DP, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout V, Bencko V, Caporaso N, Chen C, Duell EJ, Goodman G, Field JK, Houlston RS, Hong YC, Landi MT, Lazarus P, Muscat J, McLaughlin J, Schwartz AG, Shen H, Stucker I, Tajima K, Matsuo K, Thun M, Yang P, Wiencke J, Andrew AS, Monnier S, Boffetta P, Brennan P. International Lung Cancer Consortium: pooled analysis of sequence variants in DNA repair and cell cycle pathways. Cancer Epidemiol Biomark Prev. 2008;17:3081–9.CrossRefGoogle Scholar
  145. 145.
    Xiao F, Pu J, Wen Q, Huang Q, Zhang Q, Huang B, Huang S, Lan A, Zhang Y, Li J, Zhao D, Shen J, Wu H, He Y, Li H, Yang X. Association between the ERCC2 Asp312Asn polymorphism and risk of cancer. Oncotarget. 2017;18(8):48488–506.Google Scholar
  146. 146.
    Janićijević A, Sugasawa K, Shimizu Y, Hanaoka F, Wijgers N, Djurica M, Hoeijmakers JH, Wyman C. DNA bending by the human damage recognition complex XPC-HR23B. DNA Repair (Amst). 2003;2:325–36.CrossRefGoogle Scholar
  147. 147.
    Tapias A, Auriol J, Forget D, Enzlin JH, Schärer OD, Coin F, Coulombe B, Egly JM. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors. J Biol Chem. 2004;279:19074–83.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Rademakers S, Volker M, Hoogstraten D, Nigg AL, Moné MJ, Van Zeeland AA, Hoeijmakers JH, Houtsmuller AB, Vermeulen W. Xeroderma pigmentosum group A protein loads as a separate factor onto DNA lesions. Mol Cell Biol. 2003;23:5755–67.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Batty DP, Wood RD. Damage recognition in nucleotide excision repair of DNA. Gene. 2000;241:193–204.PubMedCrossRefGoogle Scholar
  150. 150.
    Kozak M. Interpreting cDNA sequences: some insights from studies on translation. Mamm Genome. 1996;7:563–74.PubMedCrossRefGoogle Scholar
  151. 151.
    Ding D, Zhang Y, Yu H, Guo Y, Jiang L, He X, Ma W, Zheng W. Genetic variation of XPA gene and risk of cancer: a systematic review and pooled analysis. Int J Cancer. 2012;131:488–96.PubMedCrossRefGoogle Scholar
  152. 152.
    Qiao Y, Spitz MR, Shen H, Guo Z, Shete S, Hedayati M, Grossman L, Mohrenweiser H, Wei Q. Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcinogenesis. 2002;23:295–9.PubMedCrossRefGoogle Scholar
  153. 153.
    Vodicka P, Kumar R, Stetina R, Sanyal S, Soucek P, Haufroid V, Dusinska M, Kuricova M, Zamecnikova M, Musak L, Buchancova J, Norppa H, Hirvonen A, Vodickova L, Naccarati A, Matousu Z, Hemminki K. Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis. 2004;25:757–63.PubMedCrossRefGoogle Scholar
  154. 154.
    Qiu L, Wang Z, Shi X, Wang Z. Association between XPC polymorphisms and risk of cancers: a meta-analysis. Eur J Cancer. 2008;44:2241–52.PubMedCrossRefGoogle Scholar
  155. 155.
    Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol. 1998;18:3563–71.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Abdel-Rahman SZ, Soliman AS, Bondy ML, Omar S, El-Badawy SA, Khaled HM, Seifeldin IA, Levin B. Inheritance of the 194Trp and the 399Gln variant alleles of the DNA repair gene XRCC1 are associated with increased risk of early-onset colorectal carcinoma in Egypt. Cancer Lett. 2000;159:79–86.PubMedCrossRefGoogle Scholar
  157. 157.
    Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res. 1999;59:2557–61.PubMedGoogle Scholar
  158. 158.
    Hu JJ, Smith TR, Miller MS, Mohrenweiser HW, Golden A, Case LD. Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. Carcinogenesis. 2001;22:917–1022.PubMedCrossRefGoogle Scholar
  159. 159.
    Hao B, Miao X, Li Y, Zhang X, Sun T, Liang G, Zhao Y, Zhou Y, Wang H, Chen X, Zhang L, Tan W, Wei Q, Lin D, He F. A novel T-77C polymorphism in DNA repair gene XRCC1 contributes to diminished promoter activity and increased risk of non-small cell lung cancer. Oncogene. 2006;25:3613–20.PubMedCrossRefGoogle Scholar
  160. 160.
    Hao B, Wang H, Zhou K, Li Y, Chen X, Zhou G, Zhu Y, Miao X, Tan W, Wei Q, Lin D, He F. Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer Res. 2004;64:4378–84.PubMedCrossRefGoogle Scholar
  161. 161.
    Dai L, Duan F, Wang P, Song C, Wang K, Zhang J. XRCC1 gene polymorphisms and lung cancer susceptibility: a meta-analysis of 44 case-control studies. Mol Biol Rep. 2012;39:9535–47.PubMedCrossRefGoogle Scholar
  162. 162.
    Spencer CC, Su Z, Donnelly P, Marchini J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 2009;5:1000477.CrossRefGoogle Scholar
  163. 163.
    Broderick P, Wang Y, Vijayakrishnan J, Matakidou A, Spitz MR, Eisen T, Amos CI, Houlston RS. Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res. 2009;69:6633–41.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Schwartz AG, Cote ML. Epidemiology of lung cancer. Adv Exp Med Biol. 2016;893:21–41.PubMedCrossRefGoogle Scholar
  165. 165.
    Timofeeva MN, Hung RJ, Rafnar T, Christiani DC, Field JK, Bickeböller H, Risch A, McKay JD, Wang Y, Dai J, Gaborieau V, McLaughlin J, Brenner D, Narod SA, Caporaso NE, Albanes D, Thun M, Eisen T, Wichmann HE, Rosenberger A, Han Y, Chen W, Zhu D, Spitz M, Wu X, Pande M, Zhao Y, Zaridze D, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Krokan HE, Gabrielsen ME, Skorpen F, Vatten L, Njølstad I, Chen C, Goodman G, Lathrop M, Benhamou S, Vooder T, Välk K, Nelis M, Metspalu A, Raji O, Chen Y, Gosney J, Liloglou T, Muley T, Dienemann H, Thorleifsson G, Shen H, Stefansson K, Brennan P, Amos CI, Houlston R, Landi MT. Transdisciplinary Research in Cancer of the Lung (TRICL) Research Team. Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol Genet. 2012;21:4980–95.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Landi MT, Chatterjee N, Yu K, Goldin LR, Goldstein AM, Rotunno M, Mirabello L, Jacobs K, Wheeler W, Yeager M, Bergen AW, Li Q, Consonni D, Pesatori AC, Wacholder S, Thun M, Diver R, Oken M, Virtamo J, Albanes D, Wang Z, Burdette L, Doheny KF, Pugh EW, Laurie C, Brennan P, Hung R, Gaborieau V, McKay JD, Lathrop M, McLaughlin J, Wang Y, Tsao MS, Spitz MR, Wang Y, Krokan H, Vatten L, Skorpen F, Arnesen E, Benhamou S, Bouchard C, Metspalu A, Vooder T, Nelis M, Välk K, Field JK, Chen C, Goodman G, Sulem P, Thorleifsson G, Rafnar T, Eisen T, Sauter W, Rosenberger A, Bickeböller H, Risch A, Chang-Claude J, Wichmann HE, Stefansson K, Houlston R, Amos CI, Fraumeni JF Jr, Savage SA, Bertazzi PA, Tucker MA, Chanock S, Caporaso NE. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet. 2009;85:679–91.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, Matakidou A, Qureshi M, Dong Q, Gu X, Chen WV, Spitz MR, Eisen T, Amos CI, Houlston RS. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet. 2008;40:1407–9.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, Byrnes G, Zaridze D, Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, McLaughlin J, Shepherd F, Montpetit A, Narod S, Krokan HE, Skorpen F, Elvestad MB, Vatten L, Njølstad I, Axelsson T, Chen C, Goodman G, Barnett M, Loomis MM, Lubiñski J, Matyjasik J, Lener M, Oszutowska D, Field J, Liloglou T, Xinarianos G, Cassidy A, Study EPIC, Vineis P, Clavel-Chapelon F, Palli D, Tumino R, Krogh V, Panico S, González CA, Ramón Quirós J, Martínez C, Navarro C, Ardanaz E, Larrañaga N, Kham KT, Key T, Bueno-de-Mesquita HB, Peeters PH, Trichopoulou A, Linseisen J, Boeing H, Hallmans G, Overvad K, Tjønneland A, Kumle M, Riboli E, Zelenika D, Boland A, Delepine M, Foglio M, Lechner D, Matsuda F, Blanche H, Gut I, Heath S, Lathrop M, Brennan P. Lung cancer susceptibility locus at 5p15.33. Nat Genet. 2008;40:1404–6.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Truong T, Hung RJ, Amos CI, Wu X, Bickeböller H, Rosenberger A, Sauter W, Illig T, Wichmann HE, Risch A, Dienemann H, Kaaks R, Yang P, Jiang R, Wiencke JK, Wrensch M, Hansen H, Kelsey KT, Matsuo K, Tajima K, Schwartz AG, Wenzlaff A, Seow A, Ying C, Staratschek-Jox A, Nürnberg P, Stoelben E, Wolf J, Lazarus P, Muscat JE, Gallagher CJ, Zienolddiny S, Haugen A, van der Heijden HF, Kiemeney LA, Isla D, Mayordomo JI, Rafnar T, Stefansson K, Zhang ZF, Chang SC, Kim JH, Hong YC, Duell EJ, Andrew AS, Lejbkowicz F, Rennert G, Müller H, Brenner H, Le Marchand L, Benhamou S, Bouchardy C, Teare MD, Xue X, McLaughlin J, Liu G, McKay JD, Brennan P, Spitz MR. Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J Natl Cancer Inst. 2010;102:959–71.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Lansdorp PM. Telomeres and disease. EMBO J. 2009;28:2532–40.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Fernandez-Garcia I, Ortiz-de-Solorzano C, Montuenga LM. Telomeres and telomerase in lung cancer. J Thorac Oncol. 2008;3:1085–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Chen C, Goodman G, Field JK, Liloglou T, Xinarianos G, Cassidy A, McLaughlin J, Liu G, Narod S, Krokan HE, Skorpen F, Elvestad MB, Hveem K, Vatten L, Linseisen J, Clavel-Chapelon F, Vineis P, Bueno-de-Mesquita HB, Lund E, Martinez C, Bingham S, Rasmuson T, Hainaut P, Riboli E, Ahrens W, Benhamou S, Lagiou P, Trichopoulos D, Holcátová I, Merletti F, Kjaerheim K, Agudo A, Macfarlane G, Talamini R, Simonato L, Lowry R, Conway DI, Znaor A, Healy C, Zelenika D, Boland A, Delepine M, Foglio M, Lechner D, Matsuda F, Blanche H, Gut I, Heath S, Lathrop M, Brennan P. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452:633–7.PubMedCrossRefGoogle Scholar
  173. 173.
    Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q, Zhang Q, Gu X, Vijayakrishnan J, Sullivan K, Matakidou A, Wang Y, Mills G, Doheny K, Tsai YY, Chen WV, Shete S, Spitz MR, Houlston RS. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40:616–22.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifsson G, Stefansson H, Ingason A, Stacey SN, Bergthorsson JT, Thorlacius S, Gudmundsson J, Jonsson T, Jakobsdottir M, Saemundsdottir J, Olafsdottir O, Gudmundsson LJ, Bjornsdottir G, Kristjansson K, Skuladottir H, Isaksson HJ, Gudbjartsson T, Jones GT, Mueller T, Gottsäter A, Flex A, Aben KK, de Vegt F, Mulders PF, Isla D, Vidal MJ, Asin L, Saez B, Murillo L, Blondal T, Kolbeinsson H, Stefansson JG, Hansdottir I, Runarsdottir V, Pola R, Lindblad B, van Rij AM, Dieplinger B, Haltmayer M, Mayordomo JI, Kiemeney LA, Matthiasson SE, Oskarsson H, Tyrfingsson T, Gudbjartsson DF, Gulcher JR, Jonsson S, Thorsteinsdottir U, Kong A, Stefansson K. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452:638–42.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Saccone NL, Culverhouse RC, Schwantes-An TH, Cannon DS, Chen X, Cichon S, Giegling I, Han S, Han Y, Keskitalo-Vuokko K, Kong X, Landi MT, Ma JZ, Short SE, Stephens SH, Stevens VL, Sun L, Wang Y, Wenzlaff AS, Aggen SH, Breslau N, Broderick P, Chatterjee N, Chen J, Heath AC, Heliövaara M, Hoft NR, Hunter DJ, Jensen MK, Martin NG, Montgomery GW, Niu T, Payne TJ, Peltonen L, Pergadia ML, Rice JP, Sherva R, Spitz MR, Sun J, Wang JC, Weiss RB, Wheeler W, Witt SH, Yang BZ, Caporaso NE, Ehringer MA, Eisen T, Gapstur SM, Gelernter J, Houlston R, Kaprio J, Kendler KS, Kraft P, Leppert MF, Li MD, Madden PA, Nöthen MM, Pillai S, Rietschel M, Rujescu D, Schwartz A, Amos CI, Bierut LJ. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 2010;6:e1001053.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Hancock DB, Wang JC, Gaddis NC, Levy JL, Saccone NL, Stitzel JA, Goate A, Bierut LJ, Johnson EO. A multiancestry study identifies novel genetic associations with CHRNA5 methylation in human brain and risk of nicotine dependence. Hum Mol Genet. 2015;24:5940–54.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Yokota J, Shiraishi K, Kohno T. Genetic basis for susceptibility to lung cancer: recent progress and future directions. Adv Cancer Res. 2010;109:51–72.PubMedCrossRefGoogle Scholar
  178. 178.
    Wang Y, Broderick P, Matakidou A, Eisen T, Houlston RS. Role of 5p15.33 (TERT-CLPTM1L), 6p21.33 and 15q25.1 (CHRNA5-CHRNA3) variation and lung cancer risk in never-smokers. Carcinogenesis. 2010;31:234–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Li Y, Sheu CC, Ye Y, de Andrade M, Wang L, Chang SC, Aubry MC, Aakre JA, Allen MS, Chen F, Cunningham JM, Deschamps C, Jiang R, Lin J, Marks RS, Pankratz VS, Su L, Li Y, Sun Z, Tang H, Vasmatzis G, Harris CC, Spitz MR, Jen J, Wang R, Zhang ZF, Christiani DC, Wu X, Yang P. Genetic variants and risk of lung cancer in never smokers: a genome-wide association study. Lancet Oncol. 2010;11:321–30.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Shi J, Chatterjee N, Rotunno M, Wang Y, Pesatori AC, Consonni D, Li P, Wheeler W, Broderick P, Henrion M, Eisen T, Wang Z, Chen W, Dong Q, Albanes D, Thun M, Spitz MR, Bertazzi PA, Caporaso NE, Chanock SJ, Amos CI, Houlston RS, Landi MT. Inherited variation at chromosome 12p13.33, including RAD52, influences the risk of squamous cell lung carcinoma. Cancer Discov. 2012;2:131–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Han S, Gao F, Yang W, Ren Y, Liang X, Xiong X, Pan W, Zhou L, Zhou C, Ma F, Yang M. Identification of an SCLC susceptibility rs7963551 genetic polymorphism in a previously GWAS-identified 12p13.33 RAD52 lung cancer risk locus in the Chinese population. Int J Clin Exp Med. 2015;8:16528–35.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Lieberman R, Xiong D, James M, Han Y, Amos CI, Wang L, You M. Functional characterization of RAD52 as a lung cancer susceptibility gene in the 12p13.33 locus. Mol Carcinog. 2016;55:953–63.PubMedCrossRefGoogle Scholar
  183. 183.
    McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R, Christiani DC, Caporaso NE, Johansson M, Xiao X, Li Y, Byun J, Dunning A, Pooley KA, Qian DC, Ji X, Liu G, Timofeeva MN, Bojesen SE, Wu X, Le Marchand L, Albanes D, Bickeböller H, Aldrich MC, Bush WS, Tardon A, Rennert G, Teare MD, Field JK, Kiemeney LA, Lazarus P, Haugen A, Lam S, Schabath MB, Andrew AS, Shen H, Hong YC, Yuan JM, Bertazzi PA, Pesatori AC, Ye Y, Diao N, Su L, Zhang R, Brhane Y, Leighl N, Johansen JS, Mellemgaard A, Saliba W, Haiman CA, Wilkens LR, Fernandez-Somoano A, Fernandez-Tardon G, van der Heijden HFM, Kim JH, Dai J, Hu Z, Davies MPA, Marcus MW, Brunnström H, Manjer J, Melander O, Muller DC, Overvad K, Trichopoulou A, Tumino R, Doherty JA, Barnett MP, Chen C, Goodman GE, Cox A, Taylor F, Woll P, Brüske I, Wichmann HE, Manz J, Muley TR, Risch A, Rosenberger A, Grankvist K, Johansson M, Shepherd FA, Tsao MS, Arnold SM, Haura EB, Bolca C, Holcatova I, Janout V, Kontic M, Lissowska J, Mukeria A, Ognjanovic S, Orlowski TM, Scelo G, Swiatkowska B, Zaridze D, Bakke P, Skaug V, Zienolddiny S, Duell EJ, Butler LM, Koh WP, Gao YT, Houlston RS, McLaughlin J, Stevens VL, Joubert P, Lamontagne M, Nickle DC, Obeidat M, Timens W, Zhu B, Song L, Kachuri L, Artigas MS, Tobin MD, Wain LV; SpiroMeta Consortium, Rafnar T, Thorgeirsson TE, Reginsson GW, Stefansson K, Hancock DB, Bierut LJ, Spitz MR, Gaddis NC, Lutz SM, Gu F, Johnson EO, Kamal A, Pikielny C, Zhu D, Lindströem S, Jiang X, Tyndale RF, Chenevix-Trench G, Beesley J, Bossé Y, Chanock S, Brennan P, Landi MT, Amos CI. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet. 2017;49:1126–32.Google Scholar
  184. 184.
    Shoemaker R, Deng J, Wang W, Zhang K. Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res. 2010;20:883–9.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Zhang D, Cheng L, Badner JA, Chen C, Chen Q, Luo W, Craig DW, Redman M, Gershon ES, Liu C. Genetic control of individual differences in gene-specific methylation in human brain. Am J Hum Genet. 2010;86:411–9.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Wang Y, McKay JD, Rafnar T, Wang Z, Timofeeva MN, Broderick P, Zong X, Laplana M, Wei Y, Han Y, Lloyd A, Delahaye-Sourdeix M, Chubb D, Gaborieau V, Wheeler W, Chatterjee N, Thorleifsson G, Sulem P, Liu G, Kaaks R, Henrion M, Kinnersley B, Vallée M, LeCalvez-Kelm F, Stevens VL, Gapstur SM, Chen WV, Zaridze D, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Krokan HE, Gabrielsen ME, Skorpen F, Vatten L, Njølstad I, Chen C, Goodman G, Benhamou S, Vooder T, Välk K, Nelis M, Metspalu A, Lener M, Lubiński J, Johansson M, Vineis P, Agudo A, Clavel-Chapelon F, Bueno-de-Mesquita HB, Trichopoulos D, Khaw KT, Johansson M, Weiderpass E, Tjønneland A, Riboli E, Lathrop M, Scelo G, Albanes D, Caporaso NE, Ye Y, Gu J, Wu X, Spitz MR, Dienemann H, Rosenberger A, Su L, Matakidou A, Eisen T, Stefansson K, Risch A, Chanock SJ, Christiani DC, Hung RJ, Brennan P, Landi MT, Houlston RS, Amos CI. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat Genet. 2014;46:736–41.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Zhang S, Lu J, Zhao X, Wu W, Wang H, Lu J, Wu Q, Chen X, Fan W, Chen H, Wang F, Hu Z, Jin L, Wei Q, Shen H, Huang W, Lu D. A variant in the CHEK2 promoter at a methylation site relieves transcriptional repression and confers reduced risk of lung cancer. Carcinogenesis. 2010;31:1251–8.PubMedCrossRefGoogle Scholar
  188. 188.
    Tycko B. Allele-specific DNA methylation: beyond imprinting. Hum Mol Genet. 2010;19:R210–20.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Kaminsky Z, Wang SC, Petronis A. Complex disease, gender and epigenetics. Ann Med. 2006;38:530–44.PubMedCrossRefGoogle Scholar
  190. 190.
    Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38:1378–85.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Sawan C, Vaissière T, Murr R, Herceg Z. Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res. 2008;642:1–13.PubMedCrossRefGoogle Scholar
  192. 192.
    Vaissière T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res. 2008;659:40–8.PubMedCrossRefGoogle Scholar
  193. 193.
    IARC. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon: International Agency for Research on Cancer; 1987.Google Scholar
  194. 194.
    Markowitz SB, Levin SM, Miller A, Morabia A. Asbestos, asbestosis, smoking, and lung cancer. New findings from the North American insulator cohort. Am J Resp Crit Care. 2013;188:90–6.CrossRefGoogle Scholar
  195. 195.
    Bignon J, Housset B, Brochard P, Pairon JC. Asbestos-related occupational lung diseases. Role of the pneumology unit in screening and compensation. Rev Mal Respir. 1999;16:S42–8.PubMedGoogle Scholar
  196. 196.
    Liu CY, Stücker I, Chen C, Goodman G, McHugh MK, D’Amelio AM Jr, Etzel CJ, Li S, Lin X, Christiani DC. Genome-wide gene-asbestos exposure interaction association study identifies a common susceptibility variant on 22q13.31 associated with lung cancer risk. Cancer Epidemiol Biomark Prev. 2015;24:1564–73.CrossRefGoogle Scholar
  197. 197.
    Stücker I, Boffetta P, Anttila S, Benhamou S, Hirvonen A, London S, Taioli E. Lack of interaction between asbestos exposure and glutathione S-transferase M1 and T1 genotypes in lung carcinogenesis. Cancer Epidemiol Biomark Prev. 2001;10:1253–8.Google Scholar
  198. 198.
    López-Cima MF, Alvarez-Avellón SM, Pascual T, Fernández-Somoano A, Tardón A. Genetic polymorphisms in CYP1A1, GSTM1, GSTP1 and GSTT1 metabolic genes and risk of lung cancer in Asturias. BMC Cancer. 2012;12:433.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Nazar-Stewart V, Vaughan TL, Stapleton P, Van Loo J, Nicol-Blades B, Eaton DL. A population-based study of glutathione S-transferase M1, T1 and P1 genotypes and risk for lung cancer. Lung Cancer. 2003;40:247–58.PubMedCrossRefGoogle Scholar
  200. 200.
    Rosenberger A, Hung RJ, Christiani DC, Caporaso NE, Liu G, Bojesen SE, Le Marchand L, Haiman CA, Albanes D, Aldrich MC, Tardon A, Fernández-Tardón G, Rennert G, Field JK, Kiemeney B, Lazarus P, Haugen A, Zienolddiny S, Lam S, Schabath MB, Andrew AS, Brunnsstöm H, Goodman GE, Doherty JA, Chen C, Teare MD, Wichmann HE, Manz J, Risch A, Muley TR, Johansson M, Brennan P, Landi MT, Amos CI, Pesch B, Johnen G, Brüning T, Bickeböller H, Gomolka M. Genetic modifiers of radon-induced lung cancer risk: a genome-wide interaction study in former uranium miners. Int Arch Occup Environ Health. 2018;91:937–50.  https://doi.org/10.1007/s00420-018-1334-3. Epub ahead of print.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Finnish Institute of Occupational HealthHelsinkiFinland

Personalised recommendations