Historical Overview of Occupational Cancer Research

  • Jack SiemiatyckiEmail author


Occupational carcinogens occupy a special place among the different classes of modifiable risk factors for cancer. The occupational environment has been a most fruitful one for investigating the pathogenesis of human cancer. Indeed, nearly half of all recognized human carcinogens are occupational carcinogens. Although it is important to discover occupational carcinogens for the sake of preventing occupational cancer, the potential benefit of such discoveries goes beyond the factory walls since most occupational exposures find their way into the general environment, sometimes at higher concentrations than in the workplace and, for some agents, with more people exposed in the general environment than in the workplace.


Occupational cancer Occupational carcinogens History Listing carcinogens Discovering carcinogens 


  1. 1.
    Pott P. Chirurgical observations relative to the cataract, the polypus of the nose, the cancer of the scrotum, the different kinds of ruptures and the mortification of the toes and feet. London: T. J. Carnegy; 1775.Google Scholar
  2. 2.
    Volkmann R. Paraffin und Russkrebs (Schornsteinfegerkrebs). Beitrage zur Chirurgie. Leipzig: Druck und Verlag von Breitkopf und Hartel; 1875. p. 370–81.Google Scholar
  3. 3.
    Bell J. Paraffin epithelioma of the scrotum. Edinb Med J. 1876;22:135–7.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Morley J. The lymphatics of the scrotum in relation to the radical operation for scrotal epithelioma. Lancet. 1911;2:1545–7.CrossRefGoogle Scholar
  5. 5.
    Southam AH, Wilson SR. Cancer of the scrotum: the aetiology, clinical features, and treatment of the disease. Br Med J. 1922;2:971–3.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Härting FH, Hesse W. Der Lungenkrebs, die Bergkrankheit in den Schneeberger Gruben. Vrtljhrssch Gerichtl Med. 1879;30:296–309.Google Scholar
  7. 7.
    Pirchan A, Sikl H. Cancer of the lung in the miners of Jachymov (Joachimstal). Report of cases observed in 1929-1930. Am J Cancer. 1932;16(4):681–722.Google Scholar
  8. 8.
    Peller S. Lung cancer among mine workers in Joachimsthal. Hum Biol. 1939;11(1):130–43.Google Scholar
  9. 9.
    Rehn L. Blasengeschwulste bei Fuchsin-Arbeitern. Arch Klin Chir. 1895;50:588–600.Google Scholar
  10. 10.
    Yamagiwa K, Ichikawa K. Experimental study of the pathogenesis of carcinoma. J Cancer Res. 1918;3:1–29.Google Scholar
  11. 11.
    Kennaway EL, Hieger I. Carcinogenic substances and their fluorescence spectra. Br Med J. 1930;1:1044–6.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cook JW, Hieger I, Kennaway EL, Mayneord WV. The production of cancer by pure hydrocarbons. Proc R Soc Lond B Biol Sci. 1932;111:455–84.Google Scholar
  13. 13.
    Hieger I. The isolation of a cancer-producing hydrocarbon from coal tar. J Chem Soc. 1933;395.Google Scholar
  14. 14.
    Waldron A. A brief history of scrotal cancer. Br J Ind Med. 1983;40:390–401.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Bridge JC. Annual report of the chief inspector for the year 1932. London: HMSO; 1933.Google Scholar
  16. 16.
    Kuroda S, Kawahata K. Uber die gewerbliche Entstehung des Lungenkrebses bei Generatorgasarbeitern. Z Krebsforsch. 1936;45:36–9.CrossRefGoogle Scholar
  17. 17.
    Machle W, Gregorius F. Cancer of the respiratory system in the United States chromate-producing industry. Public Health Rep. 1948;63:1114–27.PubMedCrossRefGoogle Scholar
  18. 18.
    Hill AB, Faning EL. Studies in the incidence of cancer in a factory handling inorganic compounds of arsenic. I. Mortality experience in the factory. Br J Ind Med. 1948;5:1–6.PubMedPubMedCentralGoogle Scholar
  19. 19.
    ERA M. Asbestosis and carcinoma of the lung. Annual report of the chief inspector of factories for the year 1947. London: HMSO; 1949. p. 79–81.Google Scholar
  20. 20.
    Doll R. The causes of death among gas-workers with special reference to cancer of the lung. Br J Ind Med. 1952;9:180.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Doll R. Mortality from lung cancer in asbestos workers. Br J Ind Med. 1955;12:81.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Case RAM, Hosker ME, McDonald DB, Pearson JT. Tumours of the urinary bladder in workmen engaged in the manufacture and use of certain dyestuff intermediates in the British chemical industry. Part I. The role of aniline, benzidine, alpha-naphthylamine and beta-naphthylamine. Br J Ind Med. 1954;11:75.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Bucher JR. The National Toxicology Program rodent bioassay: designs, interpretations, and scientific contributions. Ann N Y Acad Sci. 2002;982:198–207.PubMedCrossRefGoogle Scholar
  24. 24.
    Archer VE, Magnuson JH, Holaday DA, et al. Hazards to health in uranium mining and milling. J Occup Med. 1962;4:55–60.PubMedGoogle Scholar
  25. 25.
    Archer VE, Gillam JD, Wagoner JK. Respiratory disease mortality among uranium miners. Ann N Y Acad Sci. 1976;271:280–93.PubMedCrossRefGoogle Scholar
  26. 26.
    Howe GR, Nair RC, Newcombe HB, Miller AB, Burch JD, Abbatt JD. Lung cancer mortality (1950-80) in relation to radon daughter exposure in a cohort of workers at the Eldorado port radium uranium mine: possible modification of risk by exposure rate. J Natl Cancer Inst. 1987;79(6):1255–60.PubMedGoogle Scholar
  27. 27.
    Scott TS. The incidence of tumours in a dyestuffs factory. Br J Ind Med. 1952;9:127–32.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Meigs JW, Marrett LD, Ulrich FU, Flannery JT. Bladder tumor incidence among workers exposed to benzidine: a thirty-year follow-up. J Natl Cancer Inst. 1986;76:1–8.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Chief Inspector of Factories. Annual report of the chief inspector of factories for the year 1932. London: HMSO; 1933.Google Scholar
  30. 30.
    Doll R. Cancer of the lung and nose in nickel workers. Br J Ind Med. 1958;15:217–23.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kaldor J, Peto J, Easton D, Doll R, Hermon C, Morgan L. Models for respiratory cancer in nickel refinery workers. J Natl Cancer Inst. 1986;77(4):841–8.PubMedGoogle Scholar
  32. 32.
    Henry SA. Industrial maladies. London: Legge; 1934.Google Scholar
  33. 33.
    Lee AM, Fraumeni JF Jr. Arsenic and respiratory cancer in man: an occupational study. J Natl Cancer Inst. 1969;42(6):1045–52.PubMedGoogle Scholar
  34. 34.
    Lee-Feldstein A. Cumulative exposure to arsenic and its relationship to respiratory cancer among copper smelter employees. J Occup Med. 1986;28(4):296–302.PubMedGoogle Scholar
  35. 35.
    Pinto SS, Henderson V, Enterline PE. Mortality experience of arsenic-exposed workers. Arch Environ Health. 1978;33(6):325–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Enterline PE, Henderson VL, Marsh GM. Exposure to arsenic and respiratory cancer. A reanalysis. Am J Epidemiol. 1987;125(6):929–38.PubMedCrossRefGoogle Scholar
  37. 37.
    Lynch KM, Smith WA. Pulmonary asbestosis III: carcinoma of lung in asbesto-silicosis. Am J Cancer. 1935;24:56–64.CrossRefGoogle Scholar
  38. 38.
    Selikoff IF, Churg J, Hammond EC. Asbestos exposure and neoplasia. JAMA. 1964;118:22–6.Google Scholar
  39. 39.
    McDonald JC, Liddell FDK, Gibbs GW, Eyssen GE, McDonald AD. Dust exposure and mortality in chrysotile mining, 1910-75. Br J Ind Med. 1980;37:11–24.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Dement JM, Harris RL Jr, Symons MJ, Shy CM. Exposures and mortality among chrysotile asbestos workers. Part II: mortality. Am J Ind Med. 1983;4(3):421–33.PubMedCrossRefGoogle Scholar
  41. 41.
    Seidman H, Selikoff IJ, Gelb SK. Mortality experience of amosite asbestos factory workers: dose-response relationships 5 to 40 years after onset of short-term work exposure. Am J Ind Med. 1986;10(5–6):479–514.PubMedCrossRefGoogle Scholar
  42. 42.
    Mallory TB, Gall EA, Brickley WJ. Chronic exposure to benzene (benzol). III the pathologic results. J Ind Hyg Toxicol. 1939;21:355–77.Google Scholar
  43. 43.
    Vigliani EC, Saita G. Benzene and leukemia. N Engl J Med. 1964;271:872–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Ishimaru T, Okada H, Tomiyasu T, Tsuchimoto T, Hoshino T, Ichimaru M. Occupational factors in the epidemiology of leukemia in Hiroshima and Nagasaki. Am J Epidemiol. 1971;93(3):157–65.PubMedCrossRefGoogle Scholar
  45. 45.
    Aksoy M, Erdem S, DinCol G. Leukemia in shoe-workers exposed chronically to benzene. Blood. 1974;44(6):837–41.PubMedCrossRefGoogle Scholar
  46. 46.
    Infante PF, Rinsky RA, Wagoner JK, Young RJ. Leukaemia in benzene workers. Lancet. 1977;2(8028):76–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Rinsky RA, Smith AB, Hornung R, et al. Benzene and leukemia. An epidemiologic risk assessment. N Engl J Med. 1987;316(17):1044–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Yin SN, Li GL, Tain FD, et al. Leukaemia in benzene workers: a retrospective cohort study. Br J Ind Med. 1987;44(2):124–8.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Figueroa WG, Raszkowski R, Weiss W. Lung cancer in chloromethyl methyl ether workers. N Engl J Med. 1973;288(21):1096–7.PubMedCrossRefGoogle Scholar
  50. 50.
    DeFonso LR, Kelton SC Jr. Lung cancer following exposure to chloromethyl methyl ether. An epidemiological study. Arch Environ Health. 1976;31(3):125–30.PubMedCrossRefGoogle Scholar
  51. 51.
    McCallum RI, Woolley V, Petrie A. Lung cancer associated with chloromethyl methyl ether manufacture: an investigation at two factories in the United Kingdom. Br J Ind Med. 1983;40(4):384–9.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Creech JL Jr, Johnson MN. Angiosarcoma of liver in the manufacture of polyvinyl chloride. J Occup Med. 1974;16(3):150–1.PubMedGoogle Scholar
  53. 53.
    Monson RR, Peters JM, Johnson MN. Proportional mortality among vinyl-chloride workers. Lancet. 1974;2(7877):397–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Waxweiler RJ, Stringer W, Wagoner JK, Jones J, Falk H, Carter C. Neoplastic risk among workers exposed to vinyl chloride. Ann N Y Acad Sci. 1976;271:40–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Fox AJ, Collier PF. Mortality experience of workers exposed to vinyl chloride monomer in the manufacture of polyvinyl chloride in Great Britain. Br J Ind Med. 1977;34(1):1–10.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Siemiatycki J, Richardson L, Boffetta P. Occupation. In: Schottenfeld D, Fraumeni Jr JF, editors. Cancer epidemiology and prevention. 3rd ed. Oxford: Oxford University Press; 2006. p. 322–54.CrossRefGoogle Scholar
  57. 57.
    Potts CL. Cadmium proteinuria: the health of battery workers exposed to cadmium oxide dust. Ann Occup Hyg. 1965;8:55–61.PubMedGoogle Scholar
  58. 58.
    Kipling MD, Waterhouse JA. Cadmium and prostatic carcinoma. Lancet. 1967;1:730–1.CrossRefGoogle Scholar
  59. 59.
    Lemen RA, Lee JS, Wagoner JK, Blejer HP. Cancer mortality among cadmium production workers. Ann N Y Acad Sci. 1976;271:273–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Sorahan T, Waterhouse JAH. Mortality study of nickel-cadmium battery workers by the method of regression models in life tables. Br J Ind Med. 1983;40:293–300.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Thun MJ, Schnorr TM, Smith AB, Halperin WE, Lemen RA. Mortality among a cohort of U.S. cadmium production workers—an update. J Natl Cancer Inst. 1985;74(2):325–33.PubMedGoogle Scholar
  62. 62.
    Kazantzis G, Blanks RG, Sullivan KR, Nordberg GF, Herber RFM, Alessio L. Is cadmium a human carcinogen? Cadmium in the human environment: toxicity and carcinogenicity. Lyon: IARC; 1992. p. 435–46.Google Scholar
  63. 63.
    IARC. IARC Monographs on the evaluation of carcinogenic risks to humans. A review of human carcinogens, part C: arsenic, metals, fibres, and dusts, vol. 100. Lyon: IARC (International Agency for Research on Cancer); 2012.Google Scholar
  64. 64.
    Boffetta P, Saracci R, Andersen A, et al. Cancer mortality among man-made vitreous fiber production workers. Epidemiology. 1997;8(3):259–68.CrossRefGoogle Scholar
  65. 65.
    Marsh GM, Buchanich JM, Youk AO. Historical cohort study of US man-made vitreous fiber production workers: VI. Respiratory system cancer standardized mortality ratios adjusted for the confounding effect of cigarette smoking. J Occup Environ Med. 2001;43(9):803–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Kjaerheim K, Boffetta P, Hansen J, et al. Lung cancer among rock and slag wool production workers. Epidemiology. 2002;13(4):445–53.PubMedCrossRefGoogle Scholar
  67. 67.
    Hogstedt C, Malmqvist N, Wadman B. Leukemia in workers exposed to ethylene oxide. JAMA. 1979;241(11):1132–3.PubMedCrossRefGoogle Scholar
  68. 68.
    Hogstedt C, Aringer L, Gustavsson A. Epidemiologic support for ethylene oxide as a cancer-causing agent. JAMA. 1986;255(12):1575–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Stayner L, Steenland K, Greife A, et al. Exposure-response analysis of cancer mortality in a cohort of workers exposed to ethylene oxide. Am J Epidemiol. 1993;138(10):787–98.PubMedCrossRefGoogle Scholar
  70. 70.
    Teta MJ, Benson LO, Vitale JN. Mortality study of ethylene oxide workers in chemical manufacturing—a ten year update. Br J Ind Med. 1993;50(8):704–9.PubMedPubMedCentralGoogle Scholar
  71. 71.
    O’Berg MT. Epidemiologic study of workers exposed to acrylonitrile. J Occup Med. 1980;22(4):245–52.PubMedGoogle Scholar
  72. 72.
    Werner JB, Carter JT. Mortality of United Kingdom acrylonitrile polymerisation workers. Br J Ind Med. 1981;38(3):247–53.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Delzell E, Monson RR. Mortality among rubber workers: VI. Men with potential exposure to acrylonitrile. J Occup Med. 1982;24(10):767–9.PubMedGoogle Scholar
  74. 74.
    Acheson ED, Barnes HR, Gardner MJ, Osmond C, Pannett B, Taylor CP. Formaldehyde in the British chemical industry: an occupational cohort study. Lancet. 1984;1:611–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Blair A, Stewart P, O’Berg M, et al. Mortality among industrial workers exposed to formaldehyde. J Natl Cancer Inst. 1986;76(6):1071–84.PubMedGoogle Scholar
  76. 76.
    Bertazzi PA, Pesatori A, Guercilena S, Consonni D, Zocchetti C. Carcinogenic risk for resin producers exposed to formaldehyde: extension of follow-up. Med Lav. 1989;80(2):111–22.PubMedGoogle Scholar
  77. 77.
    Andjelkovich DA, Janszen DB, Brown MH, Richardson RB, Miller FJ. Mortality of iron foundry workers: 4. Analysis of a subcohort exposed to formaldehyde. J Occup Environ Med. 1995;37(7):826–37.PubMedCrossRefGoogle Scholar
  78. 78.
    Mahboubi A, Koushik A, Siemiatycki J, Lavoue J, Rousseau MC. Assessment of the effect of occupational exposure to formaldehyde on the risk of lung cancer in two Canadian population-based case-control studies. Scand J Work Environ Health. 2013;39:401–10.PubMedCrossRefGoogle Scholar
  79. 79.
    Shubik P, Clark Griffin A, Shaw CR. Identification of environmental carcinogens: animal test models. In: Griffin AC, Shaw CR, editors. Carcinogens: identifications and mechanisms of action. New York: Raven; 1979. p. 37–47.Google Scholar
  80. 80.
    Berenblum I. Carcinogenicity testing for control of environmental tumor development in man. Isr J Med Sci. 1979;15(6):473–9.PubMedGoogle Scholar
  81. 81.
    Wilbourn J, Haroun L, Heseltine E, Kaldor J, Partensky C, Vainio H. Response of experimental animals to human carcinogens: an analysis based upon the IARC Monographs programme. Carcinogenesis. 1986;7(11):1853–63.PubMedCrossRefGoogle Scholar
  82. 82.
    Montesano R, Bartsch H, Vainio H, Wilbourn J, Yamasaki H. Long-term and short-term assays for carcinogens: a critical appraisal. International Agency for Research on Cancer: Lyon; 1986.Google Scholar
  83. 83.
    Rall DP, Hogan MD, Huff JE, Schwetz BA, Tennant RW. Alternatives to using human experience in assessing health risks. Annu Rev Public Health. 1987;8:355–85.PubMedCrossRefGoogle Scholar
  84. 84.
    Allen BC, Crump KS, Shipp AM. Correlation between carcinogenic potency of chemicals in animals and humans. Risk Anal. 1988;8(4):531–50.PubMedCrossRefGoogle Scholar
  85. 85.
    Gold LS, Slone TH, Ames BN, Gold LS, Zeiger E. Chapter 4. Overview and update of analyses of the carcinogenic potency database. In: Gold LS, Zeiger E, editors. Handbook of carcinogenic potency and genotoxicity databases. Boca Raton: CRC Press; 1997. p. 661–85.Google Scholar
  86. 86.
    Haseman JK. Using the NTP database to assess the value of rodent carcinogenicity studies for determining human cancer risk. Drug Metab Rev. 2000;32(2):169–86.PubMedCrossRefGoogle Scholar
  87. 87.
    Tomatis L, Wilbourn J. Evaluation of carcinogenic risks to humans: the experience of IARC. In: Iversen OH, editor. New frontiers in cancer causation. Washington, DC: Taylor and Francis; 1993. p. 371–87.Google Scholar
  88. 88.
    Swenberg JA, Lehman-McKeeman LD, Capen CC, Dybing E, Rice JM, Wilbourn JD. Alpha 2-urinary globulin associated nephropathy as a mechanism of renal tubule cell carcinogenesis in male rats. In: Capen CC, Dybing E, Rice JM, Wilbourn JD, editors. Species differences in thyroid, kidney and urinary bladder carcinogenesis. Lyon: International Agency for Research on Cancer; 1999. p. 95–118.Google Scholar
  89. 89.
    Gold LS, Slone TH, Ames BN. What do animal cancer tests tell us about human cancer risk?: Overview of analyses of the carcinogenic potency database. Drug Metab Rev. 1998;30(2):359–404.PubMedCrossRefGoogle Scholar
  90. 90.
    Purchase IFH, Bannasch P. Carcinogenic risk assessment: are animals good surrogates for man? In: Bannasch P, editor. Cancer risks: strategies for elimination. Berlin: Springer; 1986. p. 65–79.Google Scholar
  91. 91.
    Gold LS, Bernstein L, Magaw R, Slone TH. Interspecies extrapolation in carcinogenesis: prediction between rats and mice. Environ Health Perspect. 1989;81:211–9.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Cohen SM. Human relevance of animal carcinogenicity studies. Regul Toxicol Pharmacol. 1995;21(1):75–80; discussion 81–86.PubMedCrossRefGoogle Scholar
  93. 93.
    Ashby J. Alternatives to the 2-species bioassay for the identification of potential human carcinogens. Hum Exp Toxicol. 1996;15(3):183–202.PubMedCrossRefGoogle Scholar
  94. 94.
    Freedman DA, Gold LS, Lin TH. Concordance between rats and mice in bioassays for carcinogenesis. Regul Toxicol Pharmacol. 1996;23(3):225–32.PubMedCrossRefGoogle Scholar
  95. 95.
    Tomatis L, Kaldor JM, Bartsch H, Schottenfeld D, Fraumeni JF Jr. Experimental studies in the assessment of human risk. In: Schottenfeld D, Fraumeni Jr JF, editors. Cancer epidemiology and prevention. 2nd ed. New York: Oxford University Press; 1996. p. 11–27.Google Scholar
  96. 96.
    Gottmann E, Kramer S, Pfahringer B, Helma C. Data quality in predictive toxicology: reproducibility of rodent carcinogenicity experiments. Environ Health Perspect. 2001;109(5):509–14.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Brent RL. Utilization of animal studies to determine the effects and human risks of environmental toxicants (drugs, chemicals, and physical agents). Pediatrics. 2004;113(3 Suppl):984–95.PubMedGoogle Scholar
  98. 98.
    Ashby J, Tennant RW. Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by US NCI/NTP (MYR 01277). Mutat Res. 1988;204(1):17–115.PubMedCrossRefGoogle Scholar
  99. 99.
    Zeiger E. Identification of rodent carcinogens and noncarcinogens using genetic toxicity tests: premises, promises, and performance. Regul Toxicol Pharmacol. 1998;28(2):85–95.PubMedCrossRefGoogle Scholar
  100. 100.
    Waters MD, Stack HF, Jackson MA, McGregor DB, Rice JM, Venitt S. Short-term tests for defining mutagenic carcinogens. In: McGregor DB, Rice JM, Venitt S, editors. The use of short- and medium-term tests for carcinogens and data on genetic effects in carcinogenic hazard evaluation. Lyon: IARC; 1999.Google Scholar
  101. 101.
    Weisburger JH. Carcinogenicity and mutagenicity testing, then and now. Mutat Res. 1999;437(2):105–12.PubMedCrossRefGoogle Scholar
  102. 102.
    Tennant RW, Spalding J, Stasiewicz S, Ashby J. Prediction of the outcome of rodent carcinogenicity bioassays currently being conducted on 44 chemicals by the National Toxicology Program. Mutagenesis. 1990;5(1):3–14.PubMedCrossRefGoogle Scholar
  103. 103.
    Huff J, Weisburger E, Fung VA. Multicomponent criteria for predicting carcinogenicity: dataset of 30 NTP chemicals. Environ Health Perspect. 1996;104(Suppl 5):1105–12.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kim BS, Margolin BH. Prediction of rodent carcinogenicity utilizing a battery of in vitro and in vivo genotoxicity tests. Environ Mol Mutagen. 1999;34(4):297–304.PubMedCrossRefGoogle Scholar
  105. 105.
    IARC. IARC Monographs on the evaluation of carcinogenic risks to humans. A review of human carcinogens, part F: chemical agents and related occupations, vol. 100. Lyon: IARC (International Agency for Research on Cancer); 2012.Google Scholar
  106. 106.
    Hansen J, Stevens RG. Case-control study of shift-work and breast cancer risk in Danish nurses: impact of shift systems. Eur J Cancer. 2012;48(11):1722–9.PubMedCrossRefGoogle Scholar
  107. 107.
    International Agency for Research on Cancer. Preamble to the IARC Monographs. 2006. Accessed 18 June 2013.
  108. 108.
    IARC. IARC Monographs on the evaluation of carcinogenic risks to humans, ionizing radiation, part 1. X-radiation and g-radiation, and neutrons, vol. 75. Lyon: IARC (International Agency for Research on Cancer); 2000.Google Scholar
  109. 109.
    IARC. IARC Monographs on the evaluation of carcinogenic risks to humans. 2019. Accessed 16 October 2019.
  110. 110.
    Siemiatycki J, Richardson L, Straif K, et al. Listing occupational carcinogens. Environ Health Perspect. 2004;112(15):1447–59; see errata: 113(2); A 89.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Guha N, Merletti F, Steenland NK, Altieri A, Cogliano V, Straif K. Lung cancer risk in painters: a meta-analysis. Cien Saude Colet. 2011;16(8):3613–32.PubMedCrossRefGoogle Scholar
  112. 112.
    World Health Organization. Prevention of cancer. Report of a WHO expert committee. Geneva: World Health Organization; 1964.Google Scholar
  113. 113.
    IARC. Evaluation of the carcinogenic risk of chemicals to humans. Supplement 7: overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42. Lyon: IARC (International Agency for Research on Cancer); 1987.Google Scholar
  114. 114.
    Doll R. 7th Walter Hubert lecture: Pott and the prospects for prevention. Br J Cancer. 1975;32:263–72.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Siemiatycki J, Day NE, Fabry J, Cooper JA. Discovering carcinogens in the occupational environment: a novel epidemiologic approach. J Natl Cancer Inst. 1981;66(2):217–25.PubMedGoogle Scholar
  116. 116.
    Nauss KM, Busby WF, Cohen AJ, et al. Critical issues in assessing the carcinogenicity of diesel exhaust: a synthesis of current knowledge. Diesel exhaust: a critical analysis of emissions, exposure, and health effects. Cambridge: Health Effects Institute; 1995. p. 11–61.Google Scholar
  117. 117.
    Katsouyanni K, Pershagen G. Ambient air pollution exposure and cancer [review]. Cancer Causes Control. 1997;8(3):284–91.PubMedCrossRefGoogle Scholar
  118. 118.
    Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons [review]. Cancer Causes Control. 1997;8(3):444–72.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Weeks JL. Reducing risk of lung cancer from diesel exhaust in underground mines. Am J Ind Med. 1998;34(3):203–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Silverman DT. Is diesel exhaust a human lung carcinogen? Epidemiology. 1998;9(1):4–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Attfield MD, Schleiff PL, Lubin JH, et al. The diesel exhaust in miners study: a cohort mortality study with emphasis on lung cancer. J Natl Cancer Inst. 2012;104(11):869–83.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Silverman DT, Samanic CM, Lubin JH, et al. The diesel exhaust in miners study: a nested case-control study of lung cancer and diesel exhaust. J Natl Cancer Inst. 2012;104(11):855–68.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Garshick E, Laden F, Hart JE, et al. Lung cancer in railroad workers exposed to diesel exhaust. Environ Health Perspect. 2004;112(15):1539–43.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Laden F, Hart JE, Eschenroeder A, Smith TJ, Garshick E. Historical estimation of diesel exhaust exposure in a cohort study of US railroad workers and lung cancer. Cancer Causes Control. 2006;17(7):911–9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Benbrahim-Tallaa L, Baan RA, Grosse Y, et al. Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol. 2012;13(7):663–4.PubMedCrossRefGoogle Scholar
  126. 126.
    IARC. Diesel and gasoline engine exhausts and some Nitroarenes. IARC monographs on the evaluation of carcinogenic risks to humans, vol 105. IARC (International Agency for Research on Cancer, Lyon) 2014.Google Scholar
  127. 127.
    Xu M, et al. Occupational exposures to leaded and unleaded gasoline engine emissions and lung cancer risk. Occup Environ Med. 2018;75(4):303–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Selikoff IJ. Historical developments and perspectives in inorganic fiber toxicity in man. Environ Health Perspect. 1990;88:269–76.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Wagner JC, Sleggs CA, Marchand P. Diffuse pleural mesothelioma and asbestos exposure in North Western Cape Province. Br J Ind Med. 1960;17:260–71.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Doll RPJ. Asbestos: effects on health of exposure to asbestos. London: Her Majesty’s Stationery Office; 1985.Google Scholar
  131. 131.
    Nicholson WJ. Airborne asbestos health assessment update. Washington, DC: Office of Health and Environmental Assessment, U.S. Environmental Protection Agency; 1986.Google Scholar
  132. 132.
    Stone R. No meeting of the minds on asbestos. Science. 1991;254(5034):928–31.PubMedCrossRefGoogle Scholar
  133. 133.
    Upton ABJBM, et al. Asbestos in public and commercial buildings: a literature review and synthesis of current knowledge. Report to: Health Effects Institute—Asbestos Research (HEI-AR). Cambridge: Health Effects Institute; 1991.Google Scholar
  134. 134.
    IPCS. (International Programme on Chemical Safety). Chrysotile asbestos. Geneva: World Health Organization; 1998.Google Scholar
  135. 135.
    Ramazzini C. Call for an international ban on asbestos. J Occup Environ Med. 1999;41(10):830–2.PubMedCrossRefGoogle Scholar
  136. 136.
    Siemiatycki J. Should Canadian health care professionals support the call for a worldwide ban on asbestos? Can Med Assoc J. 2001;164(4):495–7.Google Scholar
  137. 137.
    Camus M, Siemiatycki J, Meek B. Nonoccupational exposure to chrysotile asbestos and the risk of lung cancer. N Engl J Med. 1998;338(22):1565–71.PubMedCrossRefGoogle Scholar
  138. 138.
    IARC. IARC Monographs on the evaluation of the carcinogenic risk of chemicals to man, some inorganic and organometallic compounds, vol. 2. Lyon: IARC (International Agency for Research on Cancer); 1973.Google Scholar
  139. 139.
    IARC. IARC Monographs on the evaluation of the carcinogenic risk of chemicals to man, cadmium, nickel, some epoxides, miscellaneous industrial chemicals and general considerations on volatile anaesthetics, vol. 11. Lyon: IARC (International Agency for Research on Cancer); 1976.Google Scholar
  140. 140.
    IARC. IARC Monographs on the evaluation of carcinogenic risks to humans, beryllium, cadmium, mercury, and exposures in the glass manufacturing industry, vol. 58. Lyon: IARC (International Agency for Research on Cancer); 1993.Google Scholar
  141. 141.
    Collins DE, Richey FA Jr, Kent JA. Synthetic organic chemicals. Riegel’s handbook of industrial chemistry, vol. 9. New York: Van Nostrand Reinhold; 1992. p. 800–62.CrossRefGoogle Scholar
  142. 142.
    Block JB, Ede L. A Kentucky study: 1950-1975. In: Proceeding of NIOSH styrene-butadiene rubber briefing, Covington, Kentucky, April 30, 1976. Cincinnati: National Institute for Occupational Safety and Health; 1976. p. 28–32.Google Scholar
  143. 143.
    Lemen RA, Young R, Ede L. Investigation of health hazards in styrene-butadiene rubber facilities. In: Proceeding of NIOSH styrene-butadiene rubber briefing, Covington, Kentucky, April 30, 1976. Cincinnati: National Institute for Occupational Safety and Health; 1976. p. 3–8.Google Scholar
  144. 144.
    Nicholson WJ, Selikoff IJ, Seidman H. Mortality experience of styrene-polystyrene polymerization workers. Initial findings. Scand J Work Environ Health. 1978;4 Suppl 2:247–52.PubMedCrossRefGoogle Scholar
  145. 145.
    Bond GG, Bodner KM, Olsen GW, Cook RR. Mortality among workers engaged in the development or manufacture of styrene-based products—an update. Scand J Work Environ Health. 1992;18(3):145–54.PubMedCrossRefGoogle Scholar
  146. 146.
    Wong O, Trent LS, Whorton MD. An updated cohort mortality study of workers exposed to styrene in the reinforced plastics and composites industry. Occup Environ Med. 1994;51(6):386–96.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kogevinas M, Ferro G, Andersen A, et al. Cancer mortality in a historical cohort study of workers exposed to styrene. Scand J Work Environ Health. 1994;20(4):251–61.PubMedCrossRefGoogle Scholar
  148. 148.
    Kolstad HA, Juel K, Olsen J, Lynge E. Exposure to styrene and chronic health effects: mortality and incidence of solid cancers in the Danish reinforced plastics industry. Occup Environ Med. 1995;52(5):320–7.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Delzell E, Macaluso M, Sathiakumar N, Matthews R. Leukemia and exposure to 1,3-butadiene, styrene and dimethyldithiocarbamate among workers in the synthetic rubber industry. Chem Biol Interact. 2001;135–136:515–34.PubMedCrossRefGoogle Scholar
  150. 150.
    IARC. IARC Monographs on the evaluation of carcinogenic risks to humans, some traditional herbal medicines, some mycotoxins, naphthalene and styrene, vol. 82. Lyon: IARC (International Agency for Research on Cancer); 2002.Google Scholar
  151. 151.
    Boffetta P, Adami HO, Cole P, Trichopoulos D, Mandel JS. Epidemiologic studies of styrene and cancer: a review of the literature. J Occup Environ Med. 2009;51(11):1275–87.PubMedCrossRefGoogle Scholar
  152. 152.
    IARC. IARC Monographs on the evaluation of carcinogenic risks to humans, Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide, vol. 71. Lyon: IARC (International Agency for Research on Cancer); 1999.Google Scholar
  153. 153.
    Sathiakumar N, Graff J, Macaluso M, Maldonado G, Matthews R, Delzell E. An updated study of mortality among north American synthetic rubber industry workers. Occup Environ Med. 2005;62(12):822–9.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Delzell E, Sathiakumar N, Graff J, Macaluso M, Maldonado G, Matthews R. An updated study of mortality among North American synthetic rubber industry workers. Res Rep (Health Eff Inst). 2006;132:1–63; discussion 65–74.Google Scholar
  155. 155.
    Cheng H, Sathiakumar N, Graff J, Matthews R, Delzell E. 1,3-butadiene and leukemia among synthetic rubber industry workers: exposure-response relationships. Chem Biol Interact. 2007;166(1–3 Special Issue SI):15–24.PubMedCrossRefGoogle Scholar
  156. 156.
    Ward EM, Fajen JM, Ruder AM, Rinsky RA, Halperin WE, Fesslerflesch CA. Mortality study of workers in 1,3-butadiene production units identified from a chemical workers cohort. Environ Health Perspect. 1995;103(6):598–603.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Ward EM, Fajen JM, Ruder AM, Rinsky RA, Halperin WE, Fessler-Flesch CA. Mortality study of workers employed in 1,3-butadiene production units identified from a large chemical workers cohort. Toxicology. 1996;113:157–68.PubMedCrossRefGoogle Scholar
  158. 158.
    Divine BJ, Hartman CM. A cohort mortality study among workers at a 1,3 butadiene facility. Chem Biol Interact. 2001;135(Special Issue SI):535–53.PubMedCrossRefGoogle Scholar
  159. 159.
    Tabershaw IR, Gaffey WR. Mortality study of workers in the manufacture of vinyl chloride and its polymers. J Occup Med. 1974;16(8):509–18.PubMedGoogle Scholar
  160. 160.
    IARC. IARC Monographs on the evaluation of the carcinogenic risk of chemicals to man, some anti-thyroid and related substances, nitrofurans and industrial chemicals, vol. 7. Lyon: IARC (International Agency for Research on Cancer); 1974.Google Scholar
  161. 161.
    Doll R. Effects of exposure to vinyl chloride. An assessment of the evidence. Scand J Work Environ Health. 1988;14(2):61–78.PubMedCrossRefGoogle Scholar
  162. 162.
    Boffetta P, Matisane L, Mundt KA, Dell LD. Meta-analysis of studies of occupational exposure to vinyl chloride in relation to cancer mortality. Scand J Work Environ Health. 2003;29(3):220–9.CrossRefGoogle Scholar
  163. 163.
    Mundt KA, Dell LD, Austin RP, Luippold RS, Noess R, Bigelow C. Historical cohort study of 10 109 men in the north American vinyl chloride industry, 1942-72: update of cancer mortality to 31 December 1995. Occup Environ Med. 2000;57(11):774–81.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Ward E, Boffetta P, Andersen A, et al. Update of the follow-up of mortality and cancer incidence among European workers employed in the vinyl chloride industry. Epidemiology. 2001;12(6):710–8.CrossRefGoogle Scholar
  165. 165.
    Marion MJ, Boivin-Angele S. Vinyl chloride-specific mutations in humans and animals. In: Singer B, Bartsch H, editors. Exocyclic DNA adducts in mutagenesis and carcinogenesis. Lyon: IARC; 1999. p. 315–24.Google Scholar
  166. 166.
    Barbin A. Etheno-adduct-forming chemicals: from mutagenicity testing to tumor mutation spectra. Mutat Res. 2000;462(2–3):55–69.PubMedCrossRefGoogle Scholar
  167. 167.
    Weihrauch M, Lehnert G, Kockerling F, Wittekind C, Tannapfel A. p53 mutation pattern in hepatocellular carcinoma in workers exposed to vinyl chloride. Cancer. 2000;88(5):1030–6.PubMedCrossRefGoogle Scholar
  168. 168.
    NAS (National Academy of Sciences). The health effects of exposure to indoor radon (BEIR VI). Washington, DC: National Academy Press; 1999.Google Scholar
  169. 169.
    Checkoway H, Pearce N, Kriebel D. Research methods in occupational epidemiology. 2nd ed. New York: Oxford University Press; 2004.CrossRefGoogle Scholar
  170. 170.
    Rappaport SM, Smith TJ. Exposure assessment for epidemiology and hazard control. Chelsea: Lewis Publishers; 1991.Google Scholar
  171. 171.
    Armstrong BK, White E, Saracci R. Principles of exposure measurement in epidemiology. Oxford: Oxford University Press; 1994.Google Scholar
  172. 172.
    Blair A, Stewart PA. Correlation between different measures of occupational exposure to formaldehyde. Am J Epidemiol. 1990;131(3):510–6.PubMedCrossRefGoogle Scholar
  173. 173.
    Burstyn I, Boffetta P, Kauppinen T, et al. Estimating exposures in the asphalt industry for an international epidemiological cohort study of cancer risk. Am J Ind Med. 2003;43(1):3–17.PubMedCrossRefGoogle Scholar
  174. 174.
    Swaen GMH, Bloemen LJN, Twisk J, et al. Mortality update of workers exposed to acrylonitrile in the Netherlands. Scand J Work Environ Health. 1998;24(Suppl 2):10–6.PubMedGoogle Scholar
  175. 175.
    Stewart PA, Zaebst D, Zey JN, et al. Exposure assessment for a study of workers exposed to acrylonitrile. Scand J Work Environ Health. 1998;24(Suppl 2):42–53.PubMedGoogle Scholar
  176. 176.
    Grimsrud TK, Berge SR, Haldorsen T, Andersen A. Exposure to different forms of nickel and risk of lung cancer. Am J Epidemiol. 2002;156(12):1123–32.PubMedCrossRefGoogle Scholar
  177. 177.
    Selikoff IJ, Hammond EC, Seidman H, et al. Cancer risk of insulation workers in the United States. Biological effects of asbestos. Lyon: International Agency for Research on Cancer; 1973. p. 209–16.Google Scholar
  178. 178.
    Smith TJ, Hammond SK, Wong O. Health effects of gasoline exposure 1. Exposure assessment for US distribution workers. Environ Health Perspect. 1993;101(Suppl 6):13–21.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Siemiatycki J. Exposure assessment in community-based studies of occupational cancer. Occup Hyg. 1996;3:41–58.Google Scholar
  180. 180.
    IARC. IARC Monographs on the evaluation of carcinogenic risks to humans, cobalt in hard-metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide, vol. 86. Lyon: IARC (International Agency for Research on Cancer); 2006.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Social and Preventive MedicineUniversity of MontrealMontrealCanada

Personalised recommendations