Biofilm-Mediated Dental Diseases

  • Seema Dubey
  • Shirish DubeyEmail author
  • Ajay Gupta
  • Vikash Sharma


A human body is estimated to be made up of around one hundred trillion cells of which 90% is microflora. Bacteria are the predominant colonizers in the mouth, with 500–700 species commonly seen. The various surfaces of the oral cavity provide differing environments forming “microniches.” This leads to the development of a highly complex microbiome. Dental plaque is the biofilm which forms on the various tooth surfaces. Oral microflora has a dual role. It plays a part, not just in pathology, but also in defending the host body and in most cases is a true commensal. The most common oral diseases are dental caries and periodontitis, both of which are biofilm-mediated. Dental caries is characterized by the loss of mineralized tooth tissue due to bacterial action. Periodontitis is essentially an inflammatory process which leads to the destruction of the supporting tissues of the teeth. Several systemic diseases have been shown to be influenced by dental plaque-associated oral diseases. These include cardiovascular diseases, arthrosclerosis, infective endocarditis, aspiration pneumonia, diabetes mellitus, preterm birth, and low-birth-weight babies. The primary step in management of biofilm-related dental diseases is physical treatment, which aims to reduce the bacterial load in biofilms. However, advanced disease treatment becomes essential. Antimicrobials and antibiotics may be administered to control the disease process and reduce bacterial load and growth.


Biofilm Dental plaque Oral microflora Dental caries Periodontitis Plaque control 


  1. Aas JA, Paster BJ, Stokes LN et al (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43(11):5721–5732CrossRefPubMedPubMedCentralGoogle Scholar
  2. Addy M, Moran J, Griffiths A (1985) Extrinsic tooth discolouration by metals and chlorhexidine. I. Surface protein denaturation or dietary precipitation? Br Dent J 159:331–334CrossRefPubMedPubMedCentralGoogle Scholar
  3. Addy M, Moran J, Wade W (1994) Chemical plaque control in the prevention of gingivitis and periodontitis. In: Lang Nf, Karring T (ed) Proceedings of the 1st European workshop on periodontology. Quintessence Publishing, London, pp 244–257Google Scholar
  4. Agarwal A, Ng WJ, Liu Y (2011) Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84:1175–1180CrossRefPubMedPubMedCentralGoogle Scholar
  5. Allison DG (2003) The biofilm matrix. Biofouling 19:139–150CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barrington EP (1981) An overview of periodontal surgical procedures. J Periodontol 52:518–528CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barton J, Abelson D (1987) The clinical efficacy of wooden interdental cleaners in gingivitis reduction. Clin Prev Dent 9:17–20PubMedPubMedCentralGoogle Scholar
  8. Becker MR, Paster BJ, Leys EJ et al (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40:1001–1009CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bowden GH (1990) Microbiology of root surface caries in humans. J Dent Res 69:1205–1210CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bowden GH, Hardie JM, McKee AS et al (1976) The microflora associated with developing carious lesions of the distal surfaces of the upper first premolars in 13–14 year old children. In: Stiles HM, Loesche WJ, O’Brien TC (eds) Proceedings microbial aspects of dental caries, vol 1. Information Retrieval Inc., Washington DC, pp 233–241Google Scholar
  11. Bowen WH, Burne RA, Wu H et al (2018) Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol 26(3):229–242CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bradshaw DJ, Marsh PD, Hodgson RJ, Visser JM (2002) Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms. Caries Res 36:81–86Google Scholar
  13. Brailsford SR, Shah B, Simins D et al (2001) The predominant aciduric microflora of root-caries lesions. J Dent Res 80:1828–1833CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brecx M (1997) Strategies and agents in supragingival chemical plaque control. Periodontol 2000 15:100–108CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cancro LP, Fischman SL (2000) The expected effect on oral health of dental plaque control through mechanical removal. Periodontology 8:60–74CrossRefGoogle Scholar
  16. Carranza FA, Hogan EL (2012) Gingival enlargement. In: Newman MG, Takei HH, Klokkevold PR et al (eds) Carranza’s clinical periodontology, 11th edn. Elsevier, St Louis, p 91Google Scholar
  17. Claffey NM, Polyzois IN, Williams RC (2014) History of the oral-systemic relationship. In: Genco RJ, Williams RC (eds) Periodontal disease and overall health: a clinician’s guide, 2nd edn. PAC, Inc, USA, pp 49–62Google Scholar
  18. Collaert B, Attstrom R, De Bruyn H et al (1992) The effect of delmopinol rinsing on dental formation and gingivitis healing. J Clin Periodontol 9:274–280CrossRefGoogle Scholar
  19. Corbett TL, Dawes C (1998) A comparison of the site-specificity of supragingival and subgingival calculus deposition. J Periodontol 69(1):1–8CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cullinan MP, Seymour GJ (2000) Periodontal disease and systemic illness: will the evidence ever be enough? Periodontology 62:271–286CrossRefGoogle Scholar
  21. Cullinan MP, Ford PJ, Seymour GJ (2009) Periodontal disease and systemic health: current status. Aust Dent J 54(1):62–69CrossRefGoogle Scholar
  22. Dai R, Lam OL, Lo EC et al (2015) A systematic review and meta-analysis of clinical, microbiological, and behavioural aspects of oral health among patients with stroke. J Dent 43(2):171–180CrossRefPubMedPubMedCentralGoogle Scholar
  23. de Soet JJ, Nyvad B, Kilian M (2000) Strain-related acid production by oral streptococci. Caries Res 34:486–490CrossRefPubMedPubMedCentralGoogle Scholar
  24. Demirel K, Yalcin F, Polat E (1999) Release kinetics of 25% tetracycline hydrochloride-loaded ethylene vinyl acetate fibers. Period Clin Invest: Off Publ Northeast Soc Period 21:6–9Google Scholar
  25. Diehl SR, Chou CH, Kuo F et al (2012) Genetic factors and periodontal disease. In: Newman MG, Takei HH, Klokkevold PR et al (eds) Carranza’s clinical periodontology, 11th edn. Elsevier, St. Louis, p 284Google Scholar
  26. Ding T, Schloss PD (2014) Dynamics and associations of microbial community types across the human body. Nature 509(7500):357–360CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dye BA, Thornton-Evans G, Li X, Iafolla TJ (2015) Dental caries and sealant prevalence in children and adolescents in the United States, 2011–2012. National Center for Health Statistics Data Brief, 2015 edn. National Center for Health Statistics, Hyattsville, MDGoogle Scholar
  28. Eley BM (1999) Periodontology: antibacterial agents in the control of supragingival plaque [mdash] a review. Br Dent J 186:286–296PubMedPubMedCentralGoogle Scholar
  29. Ewan VC, Sails AD, Walls AW et al (2015) Dental and microbiological risk factors for hospital-acquired pneumonia in non-ventilated older patients. PLoS ONE 10(4):e0123622CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fernandesa T, Bhavsara C, Sawarkara S et al (2018) Current and novel approaches for control of dental biofilm. Int J Pharm 536:199–210CrossRefGoogle Scholar
  31. Ferrer DM, Mira A (2016) Oral biofilm architecture at the microbial scale. Trends Microbiol 24(4):246–248CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fey A, Conrad R (2000) Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl Environ Microbiol 66(11):4790–4797CrossRefPubMedPubMedCentralGoogle Scholar
  33. Flotra L, Gjermo I, Rolla G et al (1971) Side effects of chlorhexidine mouthwashes. Scand J Dent Res 79:119–125PubMedPubMedCentralGoogle Scholar
  34. Guo L et al (2015) The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus mutans. Sci Rep 5:18015CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gurav AN (2012) Periodontitis and insulin resistance: casual or causal relationship? J Diabetes Metab 36(6):404–411CrossRefGoogle Scholar
  36. Hajishengallis G, Kawai T (2014) Immunopathogenic mechanisms in periodontal disease. In: Lamont RJ, Hajishengallis GN, Jenkinson HF (eds) Oral microbiologyand immunology, 2nd edn. ASM Press Washington, DC, pp 287, 288–290, 295–303Google Scholar
  37. Hannig C, Hannig M, Attin T (2005) Enzymes in the acquired enamel pellicle. Eur J Oral Sci 113(1):2–13CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hayakumo S, Arakawa S, Mano Y et al (2013) Clinical and microbiological effects of ozone nano-bubble water irrigation as an adjunct to mechanical subgingival debridement in periodontitis patients in a randomized controlled trial. Clin Oral Invest 17:379–388CrossRefGoogle Scholar
  39. Hinrichs JE (2012) The role of dental calculus and other local predisposing factors. In: Newman MG, Takei HH, Klokkevold PR et al (eds) Carranza’s clinical periodontology, 11th edn. Elsevier, St. Louis, pp 134–135, 231Google Scholar
  40. Hinrichs JE, Novak MJ (2012) Classification of diseases and conditions affecting the periodontium. In: Newman MG, Takei HH, Klokkevold PR et al (eds) Carranza’s clinical periodontology, 11th edn. Elsevier, St. Louis, pp 34–64Google Scholar
  41. Hojo K, Nagaoka S, Ohshima T et al (2009) Bacterial interactions in dental biofilm development. J Dent Res 88(11):982–990CrossRefPubMedPubMedCentralGoogle Scholar
  42. Holmstrup P, Flyvbjerg A (2016) Linkage between periodontal disease and diabetes mellitus. In: Pedersen AML (ed) Oral Infections and General Health: From Molecule to Chairside. Springer International Publishing, Cham, pp 35–44CrossRefGoogle Scholar
  43. Hwang G et al (2016) Simultaneous spatio temporal mapping of in situ pH and bacterial activity within an intact 3D microcolony structure. Sci Rep 6:32841CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ide M, Papapanou PN (2013) Epidemiology of association between maternal periodontal disease and adverse pregnancy outcomes—systematic review. J Clin Periodontol 40(14):181–194Google Scholar
  45. Jenkins S, Addy M, Newcombe RG (1994) Dose response of chlorhexidine against plaque and comparison with triclosan. J Clin Periodontol 21:250–255CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jepsen S, Deschner J, Braun A et al (2011) Calculus removal and the prevention of its formation. Periodontol 2000 55(1):167–188CrossRefPubMedPubMedCentralGoogle Scholar
  47. Jones MN, Song YH, Kaszuba M (1997) The interaction of phospholipid liposomes with bacteria and their use in the delivery of bactericides. J Drug Target 5:25–34CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kasimanickam RK, Ranjan A, Asokan GV (2013) Prevention and treatment of biofilms by hybrid- and nanotechnologies. Int J Nanomed 8:2809–2819CrossRefGoogle Scholar
  49. Kassebaum NJ, Bernabe E, Dahiya M (2015) Global burden of untreated caries: a systematic review and metaregression. J Dent Res 94:650–658CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kleinberg I, Jenkins GN (1964) The pH of dental plaques in the different areas of the mouth before and after meals and their relationship to the pH and rate of flow of resting saliva. Arch Oral Biol 9:493–516CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kolenbrander PE, Palmer RJ Jr, Rickard AH et al (2000) Bacterial interactions and successions during plaque development. Periodontol 42:47–79CrossRefGoogle Scholar
  52. Kononen E, Asikainen S, Saarela M et al (1994) The oral gram-negative anaerobic microflora in young children: longitudinal changes from edentulous to dentate mouth. Oral Microbiol Immunol 9(3):136–141CrossRefPubMedPubMedCentralGoogle Scholar
  53. Koo H et al (2013) The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 92:1065–1073CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kuramitsu HK, He X, Lux R et al (2007) Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71(4):653–670CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lamont RJ, Lewis JP, Potempa J (2014) Virulence factors of periodontal bacteria. In: Lamont RJ, Hajishengallis GN, Jenkinson HF (eds) Oral microbiology and immunology, 2nd edn. ASM Press, Washington, DC, pp p273–p275Google Scholar
  56. Lang NP, Mombelli A, Attstrom R (1997) Dental plaque and calculus. Clinical periodontology and implant dentistry, 3rd edn. Blackwell Munksgaard, Oxford (United Kingdom)Google Scholar
  57. Laurence B, Mould-Millman NK, Scannapieco FA et al (2015) Hospital admissions for pneumonia more likely with concomitant dental infections. Clin Oral Invest 19:1261–1268CrossRefGoogle Scholar
  58. Lloret J, Bolanos L, Lucas MM et al (1995) Ionic stress and osmotic pressure induce different alterations in the lipopolysaccharide of a Rhizobium meliloti strain. Appl Environ Microbiol 61(10):3701–3704PubMedPubMedCentralGoogle Scholar
  59. Lockhart PB, Brennan MT, Thornhill M et al (2009) Poor oral hygiene as a risk factor for infective endocarditis-related bacteremia. J Am Dent Assoc 140(10):1238–1244CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lockhart PB, Bolger AF, Papapanou PN et al (2012) Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association? Circulation 25(20):2520–2544CrossRefGoogle Scholar
  61. Loe H, Schiott CR (1970) The effect of suppression of oral microflora upon the development of dental plaque and gingivitis. In: McHugh WD (ed) Dental plaque. Livingstone, Edinburgh, pp 247–255Google Scholar
  62. Loesche WJ (1976) Chemotherapy of dental plaque infections. Oral Sci Rev 9:63–107Google Scholar
  63. Loesche WJ (1986) Role of Streptococcus mutans in human dentaldecay. Microbiol Rev 50:353–380PubMedPubMedCentralGoogle Scholar
  64. Mandal A, Singh DK, Siddiqui H et al (2017) New dimensions in mechanical plaque control: An overview. Indian J Dent Sci 9:133–139CrossRefGoogle Scholar
  65. Marino PJ, Wise MP, Williams DW (2017) Community analysis of dental plaque and endotracheal tube biofilms from mechanically ventilated patients. J Critical Care 39:149–155CrossRefGoogle Scholar
  66. Marquis RE, Clock SA, Mota-Meira M (2003) Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol Rev 26:493–510CrossRefPubMedPubMedCentralGoogle Scholar
  67. Marsh PD (1989) Host defenses and microbial homeostasis: role of microbial interactions. J Dent Res 68:1567–1575Google Scholar
  68. Marsh PD (1999) Microbiologic aspects of dental plaque and dental caries. Dent Clin North Am 43:599–614Google Scholar
  69. Marsh PD (2003) Are dental diseases examples of ecological catastrophes? Microbiology 149:279–294CrossRefPubMedPubMedCentralGoogle Scholar
  70. Marsh PD (2004) Dental plaque as a microbial biofilm. Caries Res 38(3):204–211CrossRefPubMedPubMedCentralGoogle Scholar
  71. Marsh PD (2006) Dental plaque as a biofilm and a microbial community—implications for health and disease. BMC Oral Health 6(1):14CrossRefGoogle Scholar
  72. Marsh PD (2010) Microbiology of dental plaque biofilms and their role in oral health and caries. Dent Clin North Am 54(3):441–454CrossRefPubMedPubMedCentralGoogle Scholar
  73. Marsh P, Martin MV (1999) Oral microbiology, 4th edn. Reed Educational and Professional Publishing LimitedGoogle Scholar
  74. Marsh PD, Martin MV (2009a) Oral microbiology, 5th edn. Butterworth-Heinemann, LondonGoogle Scholar
  75. Marsh PD, Martin MV (2009b) Oral microbiology, 5th edn. Churchill Livingstone, Edinburgh (UK)Google Scholar
  76. McDermid AS, McKee AS, Marsh PD (1988) Effect of environmental pH on enzyme activity and growth of Bacteroides gingivalis W50. Infect Immun 56(5):1096–1100PubMedPubMedCentralGoogle Scholar
  77. Moore WE, Moore LV (1994) The bacteria of periodontal diseases. Periodontol 2000(5):66–77CrossRefGoogle Scholar
  78. Nagayoshi M, Fukuizumi T, Kitamura C (2004) Efficacy of ozone on survival and permeability of oral microorganisms. Oral Microbiol Immunol 19:240–246CrossRefPubMedPubMedCentralGoogle Scholar
  79. Natto ZS, Aladmawy M, Alasqah M et al (2014) Factors contributing to tooth loss among the elderly: a cross sectional study. Singapore Dent J 35:17–22CrossRefPubMedPubMedCentralGoogle Scholar
  80. Nisengard RJ, Newman MG (1988) Oral microbiology and immunology, 2nd edn. W.B. Saunders CompanyGoogle Scholar
  81. Novak MJ, Novak KF, Preshaw PM (2012) Smoking and periodontal disease. In: Newman MG, Takei HH, Klokkevold PR et al (eds) Carranza’s clinical periodontology, 11th edn. Elsevier, St. Louis, p 301Google Scholar
  82. Oktyabrskii ON, Smirnovaa GV (2012) Redox potential changes in bacterial cultures under stress conditions. Microbiology 81(2):131–142CrossRefGoogle Scholar
  83. Otto K, Elwing H, Hermansson M (1999) Effect of ionic strength on initial interactions of Escherichia coli with surfaces, studied on-line by a novel quartz crystal microbalance technique. J Bacteriol 181(17):5210–5218PubMedPubMedCentralGoogle Scholar
  84. Palm F, Pussinen PJ, Aigner A et al (2016) Association between infectious burden, socioeconomic status, and ischemic stroke. Atherosclerosis 254:117–123CrossRefPubMedPubMedCentralGoogle Scholar
  85. Papaioannou W, Gizani S, Haffajee AD et al (2009) The microbiota on different oral surfaces in healthy children. Oral Microbiol Immunol 24(3):183–189CrossRefPubMedPubMedCentralGoogle Scholar
  86. Papapanou P (2014) Periodontal diseases: general concepts. In: Lamont RJ, Hajishengallis GN, Jenkinson HF (eds) Oral microbiology and immunology, 2nd edn. ASM Press Washington, DC, pp 251–259, 261–271Google Scholar
  87. Parahitiyawa NB, Jin LJ, Leung WK et al (2009) Microbiology of odontogenic bacteremia: beyond endocarditis. Clin Microbiol Rev 22(1):46–64CrossRefPubMedPubMedCentralGoogle Scholar
  88. Perez-Diaz MA, Boegli L, James G et al (2015) Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mater Sci Eng C Mater For Biol 55:360–366CrossRefGoogle Scholar
  89. Pitiphat W, Joshipura KJ, Gillman MW et al (2008) Maternal periodontitis and adverse pregnancy outcomes. Community Dent Oral Epidemiol 36(1):3–11PubMedPubMedCentralGoogle Scholar
  90. Pitts NB et al (2017) Dental caries. Nat Rev Dis Primers 3:17030CrossRefPubMedPubMedCentralGoogle Scholar
  91. Preshaw PM, Taylor JJ (2012) Periodontal pathogenesis. In: Newman MG, Takei HH, Klokkevold PR et al (eds) Carranza’s clinical periodontology, 11th edn. Elsevier, St. Louis, pp 194–216Google Scholar
  92. Preshaw PM, Hefti AF, Novak MJ (2004) Subantimicrobial dose doxycycline enhances the efficacy of scaling and root planning in chronic periodontitis: a multicenter trial. J Periodontol 75:1068–1076CrossRefPubMedPubMedCentralGoogle Scholar
  93. Roberts-Harry EA, Clerehugh V (2000) Subgingival calculus: where are we now? A comparative review. J Dent 28(2):93–102CrossRefPubMedPubMedCentralGoogle Scholar
  94. Samaranayake L (2002) Essential microbiology for dentistry, 3rd edn. Harcourt Publisher LimitedGoogle Scholar
  95. Samaranayake LP, Ellepola ANB (2000) Studying Candida albicans adhesion. In: An Y, Freidman RJ (eds) Handbook of bacterial adhesion: principles, methods and applications. Humana Press, New York, pp 527–540CrossRefGoogle Scholar
  96. Samaranayake L, Matsubara VH (2017) Normal oral flora and the oral ecosystem. Dent Clin North Am 61(2):199–215CrossRefPubMedPubMedCentralGoogle Scholar
  97. Sansone C, Van Houte J, Joshipura K et al (1993) The association of mutans streptococci and non-mutans streptococci capable of acidogenesis at a low pH with dental caries on enamel and root surfaces. J Dent Res 72:508–516CrossRefPubMedPubMedCentralGoogle Scholar
  98. Scannapieco FA (2014) The oral environment. In: Lamont RJ, Hajishengallis GN, Jenkinson HF (ed) Oral microbiology and immunology, 2nd edn. ASM Press, Washington, DC, pp 57–62, 66, 72Google Scholar
  99. Schiott C, Loe H, Jensen SB (1970) The effect of chlorhexidine mouthrinses on the human oral flora. J Periodont Res 5:84–89CrossRefPubMedPubMedCentralGoogle Scholar
  100. Schwach-Abdellaoui K, Vivien-Castioni N, Gurny R (2000) Local delivery of antimicrobial agents for the treatment of periodontal diseases. Eur J Pharm Biopharm: Off J Arbeitsgemeinsch Pharm Verfahrenstech e.V 50:83–99Google Scholar
  101. Siegrist BE, Gusberti FA, Brecx MC et al (1986) Efficacy of supervised rinsing with chlorhexidine digluconate in comparison to phenolic and plant alkaloid compounds. J Periodont Res l(16):60–73Google Scholar
  102. Simon-Soro A, Tomas I, Cabrera-Rubio R et al (2013) Microbial geography of the oral cavity. J Dent Res 92(7):616–621CrossRefPubMedPubMedCentralGoogle Scholar
  103. Sinha S, Kumar S, Dagli N (2014) Effect of tetracycline HCl in the treatment of chronic periodontitis—a clinical study. J Int Soc Prevent Commun Dent 4:149–153CrossRefGoogle Scholar
  104. Slocum C, Kramer C, Genco CA (2016) Immune dysregulation mediated by the oral microbiome: potential link to chronic inflammation and atherosclerosis. J Intern Med 280(1):114–128CrossRefPubMedPubMedCentralGoogle Scholar
  105. Slots J, Emrich LJ, Genco RJ (1985) Relationship between some subgingival bacteria and periodontal pocket depth and gain or loss of periodontal attachment after treatment of adult periodontitis. J Clin Periodontol 12:540–552CrossRefPubMedPubMedCentralGoogle Scholar
  106. Socransky SS, Haffajee AD (1991) Microbial mechanisms in the pathogenesis of destructive periodontal diseases: a critical assessment. J Periodontal Res 26(3 Pt 2):195–212CrossRefPubMedPubMedCentralGoogle Scholar
  107. Soder B, Meurman JH, Soder PO (2014) Dental calculus is associated with death from heart infarction. Biomed Res Int 2014:1–5CrossRefGoogle Scholar
  108. Takahashi N, Nyvad B (2011) The role of bacteria in the caries process: ecological perspectives. J Dent Res 90:294–303CrossRefPubMedPubMedCentralGoogle Scholar
  109. Tariq M, Iqbal Z, Ali J (2012) Treatment modalities and evaluation models for periodontitis. Int J Pharm 2:106–122Google Scholar
  110. Theilade E (1986) The non-specific theory in microbial etiology of inflammatory periodontal diseases. J Clin Periodontol 13:905–911Google Scholar
  111. Vu B, Chen M, Crawford RJ et al (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wang CJ, McCauley LK (2016) Osteoporosis and periodontitis. Curr Osteoporos Rep 14:284–291CrossRefPubMedPubMedCentralGoogle Scholar
  113. White DJ (1997) Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur J Oral Sci 105(5 Pt 2):508–522CrossRefPubMedPubMedCentralGoogle Scholar
  114. Whittaker CJ, Klier CM, Kolenbrander PE (1996) Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 50:513–552CrossRefPubMedPubMedCentralGoogle Scholar
  115. WHO (2012a). Oral health, Fact Sheet N° 318, 2012 edn. WHO Media centre, GenevaGoogle Scholar
  116. WHO (2012b) Oral health, Fact Sheet N° 318, 2012 edn. World Health Organization, WHO Media centreGoogle Scholar
  117. Wright GZ, Banting DW, Feasby WH (1976) Dorchester dental flossing study: preliminary report. Caries Res 10:379–385CrossRefPubMedPubMedCentralGoogle Scholar
  118. Yang F, Zeng X, Ning K et al (2012) Saliva microbiomes distinguish caries-active from healthy human populations. ISME J 6(1):1–10CrossRefPubMedPubMedCentralGoogle Scholar
  119. Zander HA, Hazen SP, Scott DB (1960) Mineralization of dental calculus. Proc Soc Exp Biol Med 103:257–260CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Seema Dubey
    • 1
  • Shirish Dubey
    • 2
    Email author
  • Ajay Gupta
    • 3
  • Vikash Sharma
    • 2
  1. 1.Department of Oral Medicine and RadiologyAwadh Dental College and HospitalJamshedpurIndia
  2. 2.Department of Oral and Maxillofacial SurgeryAwadh Dental College and HospitalJamshedpurIndia
  3. 3.Consultant Oral & Maxillofacial SurgeonRama Dental CareGorakhpurIndia

Personalised recommendations