Advertisement

Biofilms in Human Health

  • Surojeet DasEmail author
  • Shivani Singh
  • Monica Steffi Matchado
  • Aashna Srivastava
  • Akash Bajpai
Chapter

Abstract

Biofilm is a surface-attached cluster of microorganisms rooted and proliferating in a self-fabricated matrix of polymeric materials. Bacteria existing in biofilms can be more resilient in comparison with their free-floating counterparts to antimicrobials. Biofilms play a substantial role in human disease transmission and perseverance, especially for inert surface-related disease, like cases of infections related to medical devices for internal or external use. Due to their better resistance against macrophages and antibiotics in comparison to free living cells, biofilm-triggered infections on implants are difficult to eradicate. While the formation of biofilms is largely understood, the means of eliminating and controlling them once they have been formed are still the subject of research. Biofilms associated in medicine are particularly difficult to handle due to the sensitivity of the human tissue and medical devices. The chapter aims at discussing biofilm development, their influence on human health and difficulties related to biofilm control.

Keywords

Biofilms Staphylococci Candida Catheter Medical devices 

References

  1. Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 127:465–478CrossRefGoogle Scholar
  2. Baier RE (1984) Initial events in microbial film formation. In: Costlow JD, Tipper RC (eds) Marine biodeterioration: an interdisciplinary study. Naval Institute Press, Annapolis, MD, pp 57–62CrossRefGoogle Scholar
  3. Bamford CV, d’Mello A, Nobbs AH et al (2009) Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 779:3696–3704CrossRefGoogle Scholar
  4. Bashan Y, Levanony H (1998) Active attachment of Azospirillum brasilence cd to quartz sand to a light textured soil by protein bridging. J Gen Microbiol 134:2269–2279Google Scholar
  5. Beech IB, Gaylarde CC (1989) Adhesion of Desulfovibrio desulfuricans and Pseudomonas fluorescens to mild steel surfaces. J Appl Bacteriol 67:201–207CrossRefGoogle Scholar
  6. Bendinger B, Rijnaarts HHM, Altendorf K, Zehnder AJB (1993) Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol 59:3973–3977PubMedPubMedCentralGoogle Scholar
  7. Branski LK, Al-Mousawi A, Rivero H et al (2009) Emerging infections in burns. Surg Infect (Larchmt) 105:389–397CrossRefGoogle Scholar
  8. Brown CM, Ellwood DC, Hunter JR (1977) Growth of bacteria at surfaces influence of nutrient limitation. FEMS MicrobiolLett 1:163–166CrossRefGoogle Scholar
  9. Bryers JD (1984) Biofilm formation and chemostat dynamics: pure and mixed culture considerations. Biotechnol Bioengrg 26:948–958CrossRefGoogle Scholar
  10. Bryers JD (1987) Biologically active surfaces; processes governing the formation and persistence of biofilms. Biotechnology 3:57–68Google Scholar
  11. Bullitt R, Makowski L (1995) Structural polymorphism of bacterial adhesion pili. Nature 373:164–167CrossRefPubMedPubMedCentralGoogle Scholar
  12. Busscher HJ, Weerkamp AH (1987) Specific and non specific interactions in bacterial adhesions to soild support. FEMS Microbiol 46:165–173CrossRefGoogle Scholar
  13. Carmona-Torre F, Yuste JR, Castejon S et al (2017) Catheter-related bloodstream infections in patients with oncohaematological malignancies. Lancet Infect Dis 172:139–140CrossRefGoogle Scholar
  14. Chamberlain A.H.L. (1992). Biofilms and corrosion. In: Melo LF, Bott TR, Fletcher M, Capdeville B (eds) Biofilms—science and technology. NATO ASI Series (Series E: Applied Sciences), vol 223. Springer, DordrechtGoogle Scholar
  15. Characklis WG (1981) Fouling biofilm development: a process analysis. Biotechnol Bioeng 23:1923–1960CrossRefGoogle Scholar
  16. Characklis WG, Cooksey KE (1983) Biofilms and microbial fouling. Appl Microbiol 29:93–138CrossRefGoogle Scholar
  17. Characklis WG, McFetes GA (1990) Physiological ecology in biofilm systems. In: Marchall KC, Characklis WG (eds) Biofilms. Willey and Sons, New York, pp 341–393Google Scholar
  18. Characklis WG, Turakhia MH (1990) Transfer and interfacial transport phenomena. In: Marchall KC, Characklis WG (eds) Biofilms. Willey and Sons, New York, pp 265–340Google Scholar
  19. Ciampolini J, Harding KG (2000) Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J 76(898):479–483CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cochrane DMG (1988) Immune response to bacterial biofilms. Med Microbiol J 27:255CrossRefGoogle Scholar
  21. Colombo AP, Boches SK, Cotton SL et al (2009) Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol 80(9):1421–1432CrossRefPubMedPubMedCentralGoogle Scholar
  22. Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their rolein community stability and organization. Am Nat 111:1119–1144CrossRefGoogle Scholar
  23. Cooper RA, Bjarnsholt T, Alhede M (2014) Biofilms in wounds: a review of present knowledge. J Wound Care 23(11):570, 572–574, 576–580 passimGoogle Scholar
  24. Corpe WA (1970) An acid polysaccharide produced by a primary film forming marine bacterium. Dev Ind Microbiol 11:402–412Google Scholar
  25. Corpe WA (1980) Microbial surface components involved in adsorption of microorganisms ontosurfaces. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley, New York, pp 105–144Google Scholar
  26. Costerton JW, Geesey GG, Cheng K-J (1978) How bacteria stick. Sci Am 238:86–95CrossRefPubMedPubMedCentralGoogle Scholar
  27. Costerton JW, Irvin RT, Cheng KJ (1981) The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35:299–324CrossRefPubMedPubMedCentralGoogle Scholar
  28. Costerton JW, Lashen ES (1984) The influence of biofilm efficacy of biocides on corrosion causing bacteria. Mater Perform 23:34–37Google Scholar
  29. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefPubMedPubMedCentralGoogle Scholar
  30. Danielsson A, Norkrans B, Bjornsson A (1977) On bacterial adhesion—the effect of certain enzymes on adhered cells in a marine Pseudomonas sp. Bot Mar 20:13–17Google Scholar
  31. Del Pozo JL, Patel R (2013) Are antibiotics and surgery sufficient to treat biofilm-associated infections? Enferm Infecc Microbiol Clin 3110:641–642CrossRefGoogle Scholar
  32. Fazli M, Bjarnsholt T, Kirketerp-Moller K et al (2009) Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 47(12):4084–4089CrossRefPubMedPubMedCentralGoogle Scholar
  33. Flemming H-C, Wingender J, Griegbe T, Mayer C (2000) Physico-chemical properties of biofilms. In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood Academic, Amsterdam, pp 19–34Google Scholar
  34. Fletcher M (1977) The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can J Microbiol 23:1–6CrossRefGoogle Scholar
  35. Fletcher M (1980) The question of passive versus active attachment mechanisms in non-specificbacterial adhesion. In: Berkeley RCW (ed) Microbial adhesion to surfaces. Horwood, Chichester, pp 67–78Google Scholar
  36. Fletcher M, Marshall KC (1982) Are solid surfaces of ecological significance to aquatic bacteria? Adv Microb Ecol 12:199–236CrossRefGoogle Scholar
  37. Foreman A, Jervis-Bardy J, Wormald PJ (2011) Do biofilms contribute to the initiation and recalcitrance of chronic rhinosinusitis? Laryngoscope 1215:1085–1091CrossRefGoogle Scholar
  38. Fredrickson AG (1977) Behaviour of mixed cultures of microorganisms. Annu Rev Microbiol 33:63–87CrossRefGoogle Scholar
  39. Fux CA, Costerton JW, Stewart PS et al (2005) Survival strategies of infectious biofilms. Trends Microbiol 131:34–40CrossRefGoogle Scholar
  40. Gajer P, Brotman RM, Bai G et al (2012) Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4(132):132ra52CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gilbert P, Maira-Litran T, McBain AJ et al (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:202–256PubMedPubMedCentralGoogle Scholar
  42. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hamilton WA, Characklis WG (1989) Relative activities of cells in suspension and in biofilms. In: Characklis WG, Wilderer PA (eds) Structure and function of biofilms. Wiley, New York, pp 199–219Google Scholar
  44. Han YW, Wang X (2013) Mobile microbiome: oral bacteria in extra-oral infections and inflammation. J Dent Res 926:485–491CrossRefGoogle Scholar
  45. Heukelekian H, Heller A (1940) Relation between food concentration and surface for bacterial growth. J Bacteriol 40:547–558PubMedPubMedCentralGoogle Scholar
  46. Hoiby N, Ciofu O, Johansen HK et al (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3(2):55–65CrossRefPubMedPubMedCentralGoogle Scholar
  47. James GA, Beaudette L, Costerton JW (1995) Interspecies bacterial interactions in biofilms. J Ind Microbiol 15:257–262CrossRefGoogle Scholar
  48. Lafaurie GI, Sabogal MA, Castillo DM et al (2017) Microbiome and microbial biofilm profiles of peri-implantitis: a systematic review. J Periodontol 1–26Google Scholar
  49. Lamont RJ, Jenkinson HF (1998) Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62(4):1244–1263PubMedPubMedCentralGoogle Scholar
  50. Lappin-Scott HM, Jass J, Costerton JW (1993) Microbial biofilm formation and characterisation. Society for applied bacteriology technical series no. 30. Soc Appl Bacteriol, BedfordGoogle Scholar
  51. Leclair LW, Hogan DA (2010) Mixed bacterial-fungal infections in the CF respiratory tract. Mycol 48 Suppl 1:S125–32Google Scholar
  52. Macfarlane S (2008) Microbial biofilm communities in the gastrointestinal tract. J Clin Gastroenterol 42Suppl 3Pt 1:S142–3Google Scholar
  53. Marmur A, Ruckenstein E (1986) Gravity and cell adhesion. J Colloid Interface Sci 114:261–266CrossRefGoogle Scholar
  54. Marsh PD, Zaura E (2014) Dental biofilm: ecological interactions in health and disease. J Clin Periodontol 44Suppl 18:S12–S22Google Scholar
  55. Marshall KC (1992) Biofilms: a overview of bacterial adhesion, activity and control at surfaces. Am Soc Microbiol News 58:202–207Google Scholar
  56. Marshall KC, Stout R, Mitchell R (1971) Mechanism of the initial events in the sorption of marinebacteria to surfaces. J Gen Microbiol 68:337–348CrossRefGoogle Scholar
  57. Mittelman MW (1996) Adhesion to biomaterials. In: Fletcher M (ed) Bacterial adhesion: molecular and ecological diversity. Wiley-Liss, New York, pp 89–127Google Scholar
  58. Palmer R Jr, White DC (1997) Developmental biology of biofilms: implications for treatment andcontrol. Trends Microbiol 5:435–440CrossRefPubMedPubMedCentralGoogle Scholar
  59. Palmer RJ (2010) Supragingival and subgingival plaque: paradigm of biofilms. Compend Contin Edu Dent 31(2): 104–106, 108, 110 passim; quiz 24, 38Google Scholar
  60. Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701CrossRefPubMedPubMedCentralGoogle Scholar
  61. Percival SL, Thomas JG (2009) Helicobacter pylori prevalence and transmission and role of biofilms. Water Health 7(3):469–477CrossRefGoogle Scholar
  62. Percival SL, Walker J, Hunter P (2000) Microbiological aspects of biofilms and drinking water. CRC Press, New YorkCrossRefGoogle Scholar
  63. Percival SL, Walker JT (1999) Biofilms and public health significance. Biofouling 14:99–115CrossRefGoogle Scholar
  64. Percival SL (2017) Importance of biofilm formation in surgical infection. Br J Surg 1042:e85–e94CrossRefGoogle Scholar
  65. Pringle JH, Fletcher M (1983) Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces. Appl Environ Microbiol 45:811–817PubMedPubMedCentralGoogle Scholar
  66. Reid G, Bruce AW, Taylor M (1992) Influence of three-day antimicrobial therapy and lactobacillus vaginal suppositories on recurrence of urinary tract infections. Clin Ther 14(1):11–16PubMedPubMedCentralGoogle Scholar
  67. Rittle KH, Helmstetter CE, Meyer AE, Baier RE (1990) Escherichia coli retention on solidsurfaces as functions of substratum surface energy and cell growth phase. Biofouling 2:121–130CrossRefGoogle Scholar
  68. Rosenberg M, Kjelleberg S (1986) Hydrophobic interactions in bacterial adhesion. Adv Microb Ecol 9:353–393CrossRefGoogle Scholar
  69. Seth AK, Geringer MR, Hong SJ et al (2012) Comparative analysis of single-species and polybacterial wound biofilms using a quantitative, in vivo, rabbit ear model. PLoS ONE 78:e42897CrossRefGoogle Scholar
  70. Singh PK, Schaefer AL, Parsek MR et al (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–764CrossRefPubMedPubMedCentralGoogle Scholar
  71. Stewart PS, Camper AK, Handran SD, Huang CT, Warnecke M (1997) Spatial distribution and coexistence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb Ecol 33:2–10CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sutherland IW (2001) The biofilm matrix: an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227CrossRefPubMedPubMedCentralGoogle Scholar
  73. Uhlinger DJ, White DC (1983) Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in Pseudomonas atlantica. Appl Environ Microbiol 45:64–70PubMedPubMedCentralGoogle Scholar
  74. Vieira MJ, Oliveira R, Melo L, Pinheiro M, van der Mei H (1992) Adhesion of Pseudomonas fluorescens to metallic surfaces. J Dispers Sci Technol 13(4):437–445Google Scholar
  75. Vyas KS, Wong LK (2016) Detection of biofilm in wounds as an early indicator for risk for tissue infection and wound chronicity. Ann Plast Surg 761:127–131CrossRefGoogle Scholar
  76. Wahl M (1989) Marine epibiosis. 1. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189CrossRefGoogle Scholar
  77. Walt DR, Smulow JB, Turesky SS, Hill RG (1985) The effect of gravity on initial microbial adhesion. J Colloid Interface Sci 107:334–336CrossRefGoogle Scholar
  78. Ward KH, Olson ME, Lam K, Costerton JW (1992) Mechanism of persistent infection associated with peritoneal implant. J Med Microbiol 36:406CrossRefPubMedPubMedCentralGoogle Scholar
  79. Whittaker CJ, Klier CM, Kolenbrander PE (1996) Mechanisms of adhesion by oral bacteria. Ann Rev Microbiol 50:513–552CrossRefGoogle Scholar
  80. Yousefi M, Pourmand MR, Fallah F et al (2016) Characterization of Staphylococcus aureus biofilm formation in urinary tract infection. Iran J Public Health 45(4):485–493PubMedPubMedCentralGoogle Scholar
  81. Zobell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46(1):39–56PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Surojeet Das
    • 1
    Email author
  • Shivani Singh
    • 1
  • Monica Steffi Matchado
    • 2
  • Aashna Srivastava
    • 1
  • Akash Bajpai
    • 1
  1. 1.Faculty of BiotechnologyInstitute of Bio-Sciences and Technology, Shri Ramswaroop Memorial UniversityBarabankiIndia
  2. 2.Ganga Research CentreCoimbatoreIndia

Personalised recommendations